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Motivation

Convergence of an adjoint solver is mainly affected by that of the
primal flow solver, which in turn strongly depends on a) the chosen
discretization scheme and b) the solution algorithm.
Classical FV schemes often employ numerical artifacts (e.g.
Non-Orthogonal Correctors with limiters) and slow solution
alghoritms. For large industrial cases this may affect convergence
or generate results which, although “good enough” on their own,
fail to produce a robust adjoint.
As an alternative we suggest here a mimetic discretization:
Mimetic Finite Differences, a.k.a. Mixed Virtual Elements.
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Mixed Virtual Elements

• Is a consistent discretization (it mimics properties of
continuous operators) → can help converge adjoint by
providing a more robust solution, as well as a more
robust Jacobian

• Does not depend on mesh orthogonality/quality → very
useful with shape optimization algorithms

• Can deal with nonconforming meshes

• Can deal with discontinuous fields
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Discrete Spaces
DOFs are defined as follows:

Space Qh
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Cell-averaged scalars:
qC := 1

|C |
∫
C q dV

Space Xh
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Face fluxes:
WF←C :=

∫
F
~W · ~nF dΣ
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Conditions on DOFs

In addition, we also have face-averaged scalars:

qF :=
1

|F |

∫
F
q dΣ

And we impose conservativity on the face fluxes:

WF←C+ + WF←C− = 0

Thus on a mesh with nC cells and nF faces we have:

• nC + nF unknowns for each scalar variable

• nF unknowns for each vector variable
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Pure Anisotropic Diffusion Equation

At first we are going to discretize the pure anisotropic diffusion
equation:

∇ · (−K∇p) = f

re-written in mixed formulation:{
~V = −K∇p
∇ · ~V = f

We shall place p in Qh and ~V in Xh; the variational form of the
constitutional equation reads (on a cell):∫

C
K−1 ~V · ~W dV = −

∫
C
∇p · ~W dV
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The Finite Element Approach

∫
C
K−1 ~V · ~W dV = −

∫
C
∇p · ~W dV

In classical FEM we would use a lifting LC on X h to reconstruct
vector fields inside the cell based on the discrete fluxes VF and WF

at the faces; then we would discretize the LHS as:∫
C
K−1LC (VF )∂C · LC (WF )∂C dV

(here (VF )∂C stands for a vector holding values VF←C , i.e. fluxes
through each face belonging to C ).
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The Finite Element Approach

Idea: we want to find a (SPD) matrix MC such that the following
holds:

MC (VF )∂C · (WF )∂C =

∫
C
K−1LC (VF )∂C · LC (WF )∂C dV

without having to explicitly compute the basis functions required
by LC .
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The K-Scalar Product

MC (VF )∂C · (WF )∂C =

∫
C
K−1LC (VF )∂C · LC (WF )∂C dV

Clearly this means that MC represents an inner product for space
X h; in fact, since it incorporates the (inverse) diffusivity tensor
K−1, it is a material-dependent scalar product.
Theorem:0 there is an admissible lifting satisfing the expression
above as long as we introduce a large enough stabilization term
when building MC (explained later).
We introduce the following notation for such K-scalar product:

[ ~V , ~W ]KC ,X h := MC (VF )∂C · (WF )∂C

[ 0]F.Brezzi et al., various publications
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Properties of MC

1. Consistency: we want the Gauss-Green formula to be
satisfied at a discrete level1; moreover, we want it to be exact
for a linear function qI :

[K∇qI , ~W ]KC ,X h +

∫
C
qIDh ~W dV =

∑
F∈∂C

WF←C
1

|F |

∫
F
qI dΣ

[ 1]F.Brezzi et al., A Family of Mimetic Finite Difference Methods
on Polygonal and Polyhedral Meshes, Math.Mod.Met.Appl.Sci.
2005.
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Properties of MC

2. Stability: the scalar product shall not vanish or become
unbound2:

s∗
∑
F∈∂C

|C |W 2
F ≤ [ ~W , ~W ]KC ,X h ≤ S∗

∑
F∈∂C

|C |W 2
F

[ 2]A.Cangiani et al., Flux Reconstruction and Solution
Post-processing in Mimetic Finite Difference Methods,
Comp.Meth.App.Mech.Eng. 2008
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Construction of MC

To construct MC , we found that using a cell-average operator for
vector-valued functions:

[ ~V , ~W ]K,avg
C ,X h = |C |(K−1C < ~V >C , < ~W >C )

where:

< ~W >C=
∑
F∈∂C

WF←C (~xF − ~xC )

|C |

with the addition of a stabilization term:

RC ( ~V , ~W ) =∑
F∈∂C

λF ,C

(
VF←C − |F |(< ~V >C , ~nF )

)(
WF←C − |F |(< ~W >C , ~nF )

)

15/39
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Construction of MC

satisfies both conditions, thus yielding a family of admissible scalar
products:

[ ~V , ~W ]KC ,X h = [ ~V , ~W ]K,avg
C ,X h + αCRC ( ~V , ~W )
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Clarification

Evidently we have considerable freedom of choice on:

• the expression for the face weights λF ,C

• the scaling factor αC for the stabilization term

How is it possible? Remember: we are trying to mimic a dot
product between two FEM-like reconstructions. Reconstructions
are not unique!
Thus it is normal that there is no unique expression of MC . But as
long as our MC is SPD and satisfies consistency and stability, then
we know that it comes from an admissible reconstruction; we don’t
care “which one”3.

[ 3]F.Brezzi, Cochain Approximation Of Differential Forms, FoCM
2008.
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MVE Flux Operator

let’s put everything together:

1. Applying our MVE inner product to the discrete variational
form of our constitutional equation we get, after some
manipulation:

MC (VF )∂C · (WF )∂C = (pC − pF )∂C · (WF )∂C

2. Since ~W is an arbitrary test function, then the following must
hold:

(VF )∂C = M−1C (pC − pF )∂C

3. This is the flux operator we were looking for.
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MVE Flux Operator

(VF )∂C = M−1C (pC − pF )∂C
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Relationship between MVE and FV

We managed to show that the operator:

(VF )∂C = M−1C (pC − pF )∂C

corresponds to a combination of two linearly consistent discrete
gradients (Green-Gauss and least-squares) based on cell and face
values of p.
Playing with different expressions of λF ,C we managed to show how
our MVE scheme can be compared to a classical FV one with a
fully implicit NOC → solution stability becomes independent of
mesh orthogonality; solution consistency holds at all times.
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Convective Term

We now move on to consider the convection-diffusion equation:

∇ · (−K∇p + ~Up) = f

Again, we re-write in mixed formulation:{
~V = −K∇p + ~Up

∇ · ~V = f

We already know how to discretize the diffusive flux. For the
convective term, we just add it to each VF :

(VF )∂C = M−1C (pC − pF )∂C + (UFpcnv )∂C
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Convective Term

(VF )∂C = M−1C (pC − pF )∂C + (UFpcnv )∂C

Stability will depend on how we choose pcnv ; we do so in analogy
with traditional CFD schemes:

• hybrid centering: pcnv = pF (which already exists as a DOF
in our framework)

• mixed centering: pcnv = pC

• hybrid upwinding: pcnv = pC if C is upwind, pF otherwise

• hybrid θ-scheme: pcnv = θpF + (1− θ)pC if C is upwind, pF
otherwise

• ... any other conceivable scheme

23/39
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Pure Anisotropic Diffusion Test Case
We validate with and h-convergece test for a benchmark pure
anisotropic diffusion case, with diffusivity tensor:

K =

(
(x + 1)2 + y2 −xy
−xy (x + 1)2

)
and exact solution:

pex(x , y) = x3y2 + x sin(2πxy) sin(2πy)

on highly distorted meshes:

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

25/39



Definition of DOFs Pure Diffusion Convection-Diffusion Results Conclusion

Pure Anisotropic Diffusion Test Case

We observe second-order convergence for scalar variables and
(roughly) first-order convergence for fluxes; this is in perfect
agreement with predictions found in literature4.

[ 4]F.Brezzi et al., Convergence of Mimetic Finite Difference
Method for Diffusion Problems on Polyhedral Meshes, SIAM
Jour.Num.An. 2005.
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Effects of Mesh Non-Orthogonality

We run a second pure diffusion test case with exact solution:

pex(x , y) = cos(2πx) + 3y

On 4 progressively non-orthogonal meshes:

A
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Effects of Mesh Non-Orthogonality

B
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Effects of Mesh Non-Orthogonality

C
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Effects of Mesh Non-Orthogonality

D
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Effects of Mesh Non-Orthogonality

Convergence properties are identical on all four meshes.
Differences in error magnitude are due to the fact that, when
distorting the mesh, we alter the average face area.
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Convective Term: Patch Test

Patch test: in case of linear scalar field p, hybrid centered scheme
produces the exact solution (at least for reasonable Pe):

Pe hyb. centered mix. centered hyb. 1st upwinding hyb. θ-scheme (0.49)

1.41E+000 5.73E-015 3.72E-005 1.95E-004 9.98E-005

1.41E+001 3.91E-014 3.56E-004 1.68E-003 8.88E-004

1.41E+002 1.44E-015 2.52E-003 5.84E-003 3.71E-003

1.41E+003 2.09E-012 5.77E-003 9.88E-003 8.87E-003

1.41E+004 3.57E-010 6.50E+000 1.10E-002 1.10E-002
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Convective Term: Different Strategies

For a nonlinear case, each scheme behaves similarily to its classical
FV counterpart:

Pe hyb. centered mix. centered hyb. 1st upwinding hyb. θ-scheme (0.49)

8.53E+002 1.89E-004 3.73E+002 1.72E-002 1.37E-002

8.53E+003 4.22E+000 3.25E+002 2.05E-002 2.00E-002

8.53E+004 1.81E+000 3.34E+000 2.11E-002 2.14E-002

8.53E+005 5.16E+000 4.61E+000 2.11E-002 2.16E-002

8.53E+006 1.33E+001 1.29E+001 2.11E-002 2.16E-002
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Stability of the θ-Scheme

Theoretical findings show that when applying the θ-scheme to the
convective term, is always stable for 0 ≤ θ ≤ 0.5.
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Stability of the θ-Scheme

Cross-section of critical area for different values of θ (high Pe):
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What We Did...

• Introduced the discrete spaces Qh and X h;

• Derived a set of consistent and stable discrete operators
acting on them;

• “bridged the gap” between MVE and FV

• Used these operators to discretize the pure anisotropic
diffusion equation in mixed-formulation;

• Added a convective term using traditional methods.
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...And What We’re Doing Next

• Discretize Navier-Stokes using MVE operators (and possibly
alternative pressure-velocity coupling schemes)

• Derive a discrete adjoint based on the above.
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