
Source-transformation adjoints for an
unstructured solver with OpenMP

Jan Hückelheim∗

∗Queen Mary University of London

August 20, 2015

AD and OpenMP - didn’t we have this already?

• OpenMP in ADOL-C for operator-overloading AD1

• Parallelisation of vector mode AD, parallel computation of
Hessians, manual parallelisation of AD code2

• Toward source-transformation OpenMP3

• New here:

1. Automatic OpenMP-parallelisation of source-transformed
adjoint (i.e. it happens in the Makefile after code preparation)

2. Hopefully efficient (i.e. adjoint as scalable as primal)
3. Exploiting properties of a (very common) special case

1Bischof, Gürtler, Kowarz, Walther (2008): Parallel Reverse Mode
Automatic Differentiation for OpenMP Programs with ADOL-C

2Martin Bücker et. al. (2001, 2002, 2004, 2008)
3Förster, Naumann, Utke (2011): Toward Adjoint OpenMP

www.aboutflow.sems.qmul.ac.uk 2/18

The primal code

• MGopt: Queen Mary University of London in-house Finite
Volume flow solver

• Runtime is important: some cases run for a week and more

• Much time spent in linear solver (not brute-force AD’ed)

• Other expensive part: Residual computation
• OpenMP used for shared-memory parallelisation of primal
• Tapenade used to create adjoint residual
• We need a parallel adjoint residual

www.aboutflow.sems.qmul.ac.uk 3/18

Primal structure

• Edge-based residual:

1

2 do edge =1... nEdges

3 i,j = nodes(edge)

4 res(i), res(j) += flux(u(i), u(j))

5 end do

• Equivalent to iterating over edges in the graph:

flux

www.aboutflow.sems.qmul.ac.uk 4/18

Primal structure

• Edge-based residual:

1

2 do edge =1... nEdges

3 i,j = nodes(edge)

4 res(i), res(j) += flux(u(i), u(j))

5 end do

• Equivalent to iterating over edges in the graph:

flux

www.aboutflow.sems.qmul.ac.uk 4/18

How not to parallelise this: Part 1

• Can we do this?

1 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

2 do edge =1... nEdges

3 i,j = nodes(edge)

4 res(i), res(j) += flux(u(i), u(j))

5 end do

• No. There can be conflicting writes:

www.aboutflow.sems.qmul.ac.uk 5/18

How not to parallelise this: Part 1

• Can we do this?

1 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

2 do edge =1... nEdges

3 i,j = nodes(edge)

4 res(i), res(j) += flux(u(i), u(j))

5 end do

• No. There can be conflicting writes:

www.aboutflow.sems.qmul.ac.uk 5/18

How not to parallelise this: Part 2

• Ok, but what about this?

1 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

2 !$OMP& REDUCTION (+,res)

3 do edge=1,nEdges

4 i,j = nodes(edge)

5 res(i), res(j) += flux(u(i), u(j))

6 end do

• Segfault (not enough memory):
• local copy of res for each thread
• perfect for scalars, not so if size(res) = meshsize.

• Slow:
• every thread writes only few values, local res copies are sparse
• all elements on each thread are initialised with neutral element,

then everything (here mostly zeroes) is reduced

www.aboutflow.sems.qmul.ac.uk 6/18

How not to parallelise this: Part 2

• Ok, but what about this?

1 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

2 !$OMP& REDUCTION (+,res)

3 do edge=1,nEdges

4 i,j = nodes(edge)

5 res(i), res(j) += flux(u(i), u(j))

6 end do

• Segfault (not enough memory):
• local copy of res for each thread
• perfect for scalars, not so if size(res) = meshsize.

• Slow:
• every thread writes only few values, local res copies are sparse
• all elements on each thread are initialised with neutral element,

then everything (here mostly zeroes) is reduced

www.aboutflow.sems.qmul.ac.uk 6/18

How not to parallelise this: Part 2

• Ok, but what about this?

1 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

2 !$OMP& REDUCTION (+,res)

3 do edge=1,nEdges

4 i,j = nodes(edge)

5 res(i), res(j) += flux(u(i), u(j))

6 end do

• Segfault (not enough memory):
• local copy of res for each thread
• perfect for scalars, not so if size(res) = meshsize.

• Slow:
• every thread writes only few values, local res copies are sparse
• all elements on each thread are initialised with neutral element,

then everything (here mostly zeroes) is reduced

www.aboutflow.sems.qmul.ac.uk 6/18

Primal parallelisation
• Solution: edge colouring

1 do colour=1,nColours

2 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

3 do edge=firstEdge(colour),lastEdge(colour)

4 i,j = nodes(edge)

5 res(i), res(j) += flux(u(i), u(j))

6 end do

7 end do

• All edges of one colour can be done in parallel

www.aboutflow.sems.qmul.ac.uk 7/18

Primal parallelisation
• Solution: edge colouring

1 do colour=1,nColours

2 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

3 do edge=firstEdge(colour),lastEdge(colour)

4 i,j = nodes(edge)

5 res(i), res(j) += flux(u(i), u(j))

6 end do

7 end do

• All edges of one colour can be done in parallel

www.aboutflow.sems.qmul.ac.uk 7/18

How not to adjoint this: Part 1

• Tapenade used to treat OpenMP pragmas as regular
comments

• Comments are dumped in the adjoint code at (roughly) the
same location as in the primal

• Unpredictable results, or does not compile

www.aboutflow.sems.qmul.ac.uk 8/18

How not to adjoint this: Part 2

• Taf can do OpenMP, Tapenade could be extended

• How good can a general purpose AD tool do here?

1 do colour=nColours ,1

2 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

3 !$OMP& REDUCTION (+,ub)

4 do edge=lastEdge(colour),firstEdge(colour)

5 i,j = nodes(edge)

6 ub(i),ub(j) += flux_b(u(i), u(j), res(i), &

7 & res(j), resb(i), resb(j))

8 end do

9 end do

• No tool will understand our colouring on its own

• Tool has to be conservative, either use reduction (slow,
memory) or atomic/critical sections (slow)

www.aboutflow.sems.qmul.ac.uk 9/18

Adjoint parallelisation in principle

• Actually it is all easy: communication is symmetric!

• Primal and adjoint read and write in the same way

ures

res

Primal Adjoint

u

ub resb

resbub

www.aboutflow.sems.qmul.ac.uk 10/18

Adjoint parallelisation in principle

• Actually it is all easy: communication is symmetric!

• Primal and adjoint read and write in the same way

ures

res

Primal Adjoint

u

ub resb

resbub

www.aboutflow.sems.qmul.ac.uk 10/18

Adjoint parallelisation with colouring

• The edges are still separated by colour after brute-force AD

• We can use the same OpenMP pragma as before

1 do colour=nColours ,1

2 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

3 do edge=lastEdge(colour),firstEdge(colour)

4 i,j = nodes(edge)

5 ub(i),ub(j) += flux_b(u(i), u(j), res(i), &

6 & res(j), resb(i), resb(j))

7 end do

8 end do

www.aboutflow.sems.qmul.ac.uk 11/18

Adjoint parallelisation in practice

• How to we make this automatic? We know that:
• if variable foo is private, foob is private
• if variable bar is shared, barb is shared
• what happens to new variables that are created in

adjoint code, e.g. temp1, temp2, arg1, arg2...?

• Need some post-processing that will
• Wipe all misplaced OpenMP statements from Tapenade output
• Place new pragmas with correct scoping
• How to do this correctly without using a full Fortran

parser?

www.aboutflow.sems.qmul.ac.uk 12/18

”Outlining” of parallel regions

• OpenMP compiler trick: place parallel region into new
subroutine to take care of scoping4

• shared variables are arguments, passed call-by-reference

• private variables are local variables inside subroutine

• idea: let’s do this before passing code to AD tool

4Liao et.al. (2007): OpenUH: An optimizing, portable OpenMP compiler
www.aboutflow.sems.qmul.ac.uk 13/18

Source-transformed outlined code

• OpenMP defaults: everything shared by default, except loop
counter (edge) and local subroutine variables (i,j)

• this is exactly what we need for the adjoint as well

1 do colour=1,nColours !forward

2 !$OMP PARALLEL DO

3 do edge=firstEdge(colour),lastEdge(colour)

4 call flux_loopbody(edge ,res ,u)

5 end do

6 end do

7 do colour=nColours ,1 !reverse

8 !$OMP PARALLEL DO

9 do edge=lastEdge(colour),firstEdge(colour)

10 call flux_loopbody_b(edge ,res ,resb ,u,ub)

11 end do

12 end do

www.aboutflow.sems.qmul.ac.uk 14/18

Another small technicality

• Forward sweep pushes intermediate results to stack

• Reverse sweep pops them from stack

• Need to make sure that
• each thread has its own stack
• parallel regions are used in forward and reverse code

consistently

www.aboutflow.sems.qmul.ac.uk 15/18

How it works, finally

• All bodies of parallel loops are placed in subroutine with
special suffix (loopbody)

• Python script removes all OpenMP pragmas from Tapenade
output

• Before every loop that contains call to * loopbody or
* loopbody b, insert

!$OMP PARALLEL DO DEFAULT(SHARED)

• Replace all calls to PUSHINTEGER(n) by
THREADPUSHINTEGER(n,numThread), likewise for all other
push/pop routines.

• Link thread-safe stack instead of Tapenade stack

www.aboutflow.sems.qmul.ac.uk 16/18

Conclusion: What works, what doesn’t?

• if communication pattern is symmetric, we can automatically
generate parallel AD code

• sometimes, code can be reorganised to become symmetric5

u

res

pull all values directly compute flux at edge,
 then scatter

Not symmetric symmetric

• some things are not symmetric. Boundaries are a problem.

5ask me for an example code if interested
www.aboutflow.sems.qmul.ac.uk 17/18

Acknowledgments

This work has been conducted within the About Flow project on
“Adjoint-based optimisation of industrial and unsteady flows”.

http://aboutflow.sems.qmul.ac.uk

About Flow has received funding from the European Union’s
Seventh Framework Programme for research, technological

development and demonstration under Grant Agreement
No. 317006.

This research utilised Queen Mary University of London’s MidPlus
computational facilities, supported by QMUL Research-IT and

funded by EPSRC grant EP/K000128/1.

www.aboutflow.sems.qmul.ac.uk 18/18

