
Source-transformation adjoints for an
unstructured solver with OpenMP

Jan Hückelheim∗

∗Queen Mary University of London

August 20, 2015



AD and OpenMP - didn’t we have this already?

• OpenMP in ADOL-C for operator-overloading AD1

• Parallelisation of vector mode AD, parallel computation of
Hessians, manual parallelisation of AD code2

• Toward source-transformation OpenMP3

• New here:

1. Automatic OpenMP-parallelisation of source-transformed
adjoint (i.e. it happens in the Makefile after code preparation)

2. Hopefully efficient (i.e. adjoint as scalable as primal)
3. Exploiting properties of a (very common) special case

1Bischof, Gürtler, Kowarz, Walther (2008): Parallel Reverse Mode
Automatic Differentiation for OpenMP Programs with ADOL-C

2Martin Bücker et. al. (2001, 2002, 2004, 2008)
3Förster, Naumann, Utke (2011): Toward Adjoint OpenMP
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The primal code

• MGopt: Queen Mary University of London in-house Finite
Volume flow solver

• Runtime is important: some cases run for a week and more

• Much time spent in linear solver (not brute-force AD’ed)

• Other expensive part: Residual computation
• OpenMP used for shared-memory parallelisation of primal
• Tapenade used to create adjoint residual
• We need a parallel adjoint residual
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Primal structure

• Edge-based residual:

1

2 do edge =1... nEdges

3 i,j = nodes(edge)

4 res(i), res(j) += flux(u(i), u(j))

5 end do

• Equivalent to iterating over edges in the graph:

flux
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How not to parallelise this: Part 1

• Can we do this?

1 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

2 do edge =1... nEdges

3 i,j = nodes(edge)

4 res(i), res(j) += flux(u(i), u(j))

5 end do

• No. There can be conflicting writes:

www.aboutflow.sems.qmul.ac.uk 5/18



How not to parallelise this: Part 1

• Can we do this?

1 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

2 do edge =1... nEdges

3 i,j = nodes(edge)

4 res(i), res(j) += flux(u(i), u(j))

5 end do

• No. There can be conflicting writes:

www.aboutflow.sems.qmul.ac.uk 5/18



How not to parallelise this: Part 2

• Ok, but what about this?

1 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

2 !$OMP& REDUCTION (+,res)

3 do edge=1,nEdges

4 i,j = nodes(edge)

5 res(i), res(j) += flux(u(i), u(j))

6 end do

• Segfault (not enough memory):
• local copy of res for each thread
• perfect for scalars, not so if size(res) = meshsize.

• Slow:
• every thread writes only few values, local res copies are sparse
• all elements on each thread are initialised with neutral element,

then everything (here mostly zeroes) is reduced
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Primal parallelisation
• Solution: edge colouring

1 do colour=1,nColours

2 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

3 do edge=firstEdge(colour),lastEdge(colour)

4 i,j = nodes(edge)

5 res(i), res(j) += flux(u(i), u(j))

6 end do

7 end do

• All edges of one colour can be done in parallel
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How not to adjoint this: Part 1

• Tapenade used to treat OpenMP pragmas as regular
comments

• Comments are dumped in the adjoint code at (roughly) the
same location as in the primal

• Unpredictable results, or does not compile
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How not to adjoint this: Part 2

• Taf can do OpenMP, Tapenade could be extended

• How good can a general purpose AD tool do here?

1 do colour=nColours ,1

2 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

3 !$OMP& REDUCTION (+,ub)

4 do edge=lastEdge(colour),firstEdge(colour)

5 i,j = nodes(edge)

6 ub(i),ub(j) += flux_b(u(i), u(j), res(i), &

7 & res(j), resb(i), resb(j))

8 end do

9 end do

• No tool will understand our colouring on its own

• Tool has to be conservative, either use reduction (slow,
memory) or atomic/critical sections (slow)
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Adjoint parallelisation in principle

• Actually it is all easy: communication is symmetric!

• Primal and adjoint read and write in the same way

ures

res

Primal Adjoint

u

ub resb

resbub
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Adjoint parallelisation with colouring

• The edges are still separated by colour after brute-force AD

• We can use the same OpenMP pragma as before

1 do colour=nColours ,1

2 !$OMP PARALLEL DO PRIVATE(edge ,i,j)

3 do edge=lastEdge(colour),firstEdge(colour)

4 i,j = nodes(edge)

5 ub(i),ub(j) += flux_b(u(i), u(j), res(i), &

6 & res(j), resb(i), resb(j))

7 end do

8 end do
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Adjoint parallelisation in practice

• How to we make this automatic? We know that:
• if variable foo is private, foob is private
• if variable bar is shared, barb is shared
• what happens to new variables that are created in

adjoint code, e.g. temp1, temp2, arg1, arg2...?

• Need some post-processing that will
• Wipe all misplaced OpenMP statements from Tapenade output
• Place new pragmas with correct scoping
• How to do this correctly without using a full Fortran

parser?
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”Outlining” of parallel regions

• OpenMP compiler trick: place parallel region into new
subroutine to take care of scoping4

• shared variables are arguments, passed call-by-reference

• private variables are local variables inside subroutine

• idea: let’s do this before passing code to AD tool

4Liao et.al. (2007): OpenUH: An optimizing, portable OpenMP compiler
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Source-transformed outlined code

• OpenMP defaults: everything shared by default, except loop
counter (edge) and local subroutine variables (i,j)

• this is exactly what we need for the adjoint as well

1 do colour=1,nColours !forward

2 !$OMP PARALLEL DO

3 do edge=firstEdge(colour),lastEdge(colour)

4 call flux_loopbody(edge ,res ,u)

5 end do

6 end do

7 do colour=nColours ,1 !reverse

8 !$OMP PARALLEL DO

9 do edge=lastEdge(colour),firstEdge(colour)

10 call flux_loopbody_b(edge ,res ,resb ,u,ub)

11 end do

12 end do
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Another small technicality

• Forward sweep pushes intermediate results to stack

• Reverse sweep pops them from stack

• Need to make sure that
• each thread has its own stack
• parallel regions are used in forward and reverse code

consistently
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How it works, finally

• All bodies of parallel loops are placed in subroutine with
special suffix ( loopbody)

• Python script removes all OpenMP pragmas from Tapenade
output

• Before every loop that contains call to * loopbody or
* loopbody b, insert

!$OMP PARALLEL DO DEFAULT(SHARED)

• Replace all calls to PUSHINTEGER(n) by
THREADPUSHINTEGER(n,numThread), likewise for all other
push/pop routines.

• Link thread-safe stack instead of Tapenade stack
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Conclusion: What works, what doesn’t?

• if communication pattern is symmetric, we can automatically
generate parallel AD code

• sometimes, code can be reorganised to become symmetric5

u

res

pull all values directly compute flux at edge,
       then scatter

Not symmetric symmetric

• some things are not symmetric. Boundaries are a problem.

5ask me for an example code if interested
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