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Morphing as a step towards automation

Re-meshing

Trashing of the mesh at the end of each optimization cycle and generation
of a new one. Time-consuming, gradient consistency lost from one cycle
to the other. In some cases manual intervention during mesh generation.

Morphing

Deformation of the existing mesh. Aim: adjoint-based optimization at
iso-connectivity. Challenges: avoiding twisted/heavily distorted cells,
robustness issues (mesh anisotropy, mesh rotation).

The basic idea

The internal nodes of the mesh should gracefully follow the movement of
boundary nodes, as indicated by the optimization algorithm.
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Existing mesh morphing methods

Method Shortcomings

Spring analogy Not robust
Laplacian smoothening More robust. No

rotation. No mesh
anisotropy.

Linear elasticity More robust but mesh
anisotropy?

Radial Basis Functions Dense matrices, Limita-
tions in mesh size, trade-
off between computa-
tional cost & implemen-
tation simplicity

Common characteristic of the first three: they don’t handle naturally mesh
anisotropy.
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Brief introduction to R3M

Why “Rigid Motion” ?

Technically speaking it’s not “rigid”. It’s “as-rigid-as-possible”. And it’s
not meant for the entire mesh (how could it be?). It’s meant for groups of
nodes called stencils.

Stencils?

Example: A node plus its neighbouring nodes (sharing one or more cells
with it).
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Brief introduction to R3M
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(a)
~υsj = ~as + ~bs ∧ ( ~xj − ~cs)

~bs
~as

~υj

(b) ~υj 6= ~as + ~bs ∧ ( ~xj − ~cs)

~esj = ~υj − ~υsj = ~υj − ~as − ~bs ∧ ( ~xj − ~cs)

~esj =
√
wsµsj(~υj − ~as − ~bs ∧ ( ~xj − ~cs))
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Brief introduction to R3M

The total distortion energy of the mesh will be

E =
∑
s

∑
j∈s

~esj
T · ~esj =

∑
s

∑
j∈s
‖ ~esj‖2

It serves as the distortion metric which needs to be minimized. Hence the
classification of the method as “optimization based”.

∂E

∂υj
=
∂E

∂as
=
∂E

∂βs
= 0
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Final system of equations

The quadratic minimization problem of the total distortion energy of the
mesh, as shown above, brings us to the following symmetric positive
definite system [

Auu Au(a|b)
A(a|b)u A(a|b)(a|b)

]
·
[
u

(a|b)

]
=

[
Pu

P(a|b)

]
where the RHS consists of the boundary conditions, namely the prescribed
nodes’ velocities. Attempting to solve it using the Schur complement leads
to two different cases of elimination:

Either u = f(a|b) or

(a|b) = g(u)
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Final system of equations

for instance

u = −A−1uu · Au(a|b) · (a|b) + A−1uu · Pu →
(−A(a|b)u · A−1uu · Au(a|b) + A(a|b)(a|b)) · (a|b) = −A(a|b)u · A−1uu · Pu + P(a|b)

or

(a|b) = −A−1(a|b)(a|b) · A(a|b)u · u+ A−1(a|b)(a|b) · P(a|b) →

(Auu − Au(a|b) · A−1(a|b)(a|b) · A(a|b)u) · u = Pu − Au(a|b) · A−1(a|b)(a|b) · P(a|b)
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Explanation of the µsj coefficient

Figure: Isotropic stencil T = I

Figure: Squeezed/anisotropic stencil (we favour rigidity in the direction of
squeeze) T 6= I
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Explanation of the µsj coefficient

Reminder:

~esj =
√
wsµsj(~υj − ~as − ~bs ∧ ( ~xj − ~cs))

Relative weight stencil ⇒ node (scalar coefficient):

µsj =

exp

(
−‖ ~xj − ~cs‖2

h2

)
‖ ~xj − ~cs‖2 + ε
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Results
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Conclusions / Next Steps / improvements

R3M is/does:

Essentially mesh-less (only needs nodes and not cell or inertial data)

Manage intrisically mesh anisotropy and rotation.

Better weighting

Improved propagation of deformation to all layers by setting the
coefficients ws = f(

∫
tEsdt) as a function of the integral of the stencil

distortion energy over time.

Coupling with ESI’s i-adjoint solver

for automated optimization loops
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