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Abstract. Adjoint methods allow to compute the gradient of a cost function at an expense that
is independent of the number of design variables, thus representing an appealing tool to those
who deal with large-scale gradient-based optimization processes. However, researchers in the
field are currently facing difficulties related to poor convergence and high storage memory
requirements.

Both continuous and discrete adjoints require a fully converged solution to the primal prob-
lem. It is argued that, specifically in Computational Fluid Dynamics, the presence of numerical
adjustments (e.g. non-orthogonal correctors) and segregated solution algorithms yields a solu-
tion that, while acceptable as a mere aerodynamics study, is not accurate enough to produce a
robust adjoint system.

In the past decade some new PDE discretization schemes have emerged aiming to remove
some constraints imposed by classical finite volumes. The main goal is to allow for more
freedom in both the physical model (e.g. strong anisotropy in a material property) and its
corresponding numerical model (e.g. the possibility to use polyhedral meshes with strongly
non-orthogonal and/or non-convex cells), while improving solution accuracy and convergence
properties at the same time.

One of such new schemes is known as Mimetic Finite Differences; the present work intro-
duces a specific implementation of it and extends the scheme to cater for convection-diffusion-
reaction problems. Preliminary numerical results are also included.
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1 INTRODUCTION

In the past decade some new PDE discretization schemes have emerged aiming to remove
some constraints imposed by classical Finite Volumes (FV). The main goal is to allow for more
freedom in both the physical model (e.g. strong anisotropy in a material property) and its
corresponding numerical model, while improving solution accuracy and convergence properties
at the same time.

One increasingly popular example of such new schemes is known as Mimetic Finite Dif-
ferences (MFD), recently recast as (mixed) Virtual Element Method [8], and it aims at defining
discrete operators that preserve the fundamental properties of the underlying physical and math-
ematical models. In its early developments the MFD method was aimed at discretizing the pure
anisotropic diffusion equation [5, 6, 11, 14, 16, 17]; its potential in this case has been largely
validated on a number of 2D polygonal and 3D polyhedral meshes, with stress on the fact that
the requirements on mesh regularity are minimal compared to traditional FV. Thus we can, for
instance, solve on unstructured polyhedral meshes featuring non-orthogonal, strongly skewed,
non-convex and non-conforming elements; furthermore we can solve problems presenting dis-
continuities in material properties. Such freedom makes MFD appealing in a number of appli-
cations, most notably the modeling of geological layers in reservoirs, magnetostatic fields [19]
or flow through porous media.

Recent attempts have also been made to extend MFD to convection-diffusion-type problems
[13, 21, 22] and, subsequently, to the Navier-Stokes equations [12], thus making it a promising
alternative CFD tool; in this context the method is often referred to as Mixed Finite Volumes
(MFV), as it incorporates some elements from traditional FV.

In the context of optimization, remarks have been made on how MFD is a promising tech-
nology in e.g. control [2] or shape optimization [3] problems, where the presence of mesh-
distorting or mesh-adapting algorithms easily produces grids that cannot be handled by classical
FV, thus requiring time-consuming re-meshing processes that cannot always be automated.

We claim here that MFD can help solve some of the issues affecting adjoint-based CFD op-
timization, as well: a better-converged and more consistent solution to the primal problem may
lead to a more robust expression of the adjoint equation (either discrete or continuous); it would
be equally interesting to attempt an MFV discretization of the continuous adjoint equation. In
the present work we go over the main concepts of MFD and present our own extension of the
scheme to cater for convection-diffusion-reaction problems; we then show and comment on a
few numerical results.

2 THE PURE ANISOTROPIC DIFFUSION CASE

As we said, early developments of MFD aimed at defining a novel discretization for the pure
anisotropic diffusion equation. We provide in this section a brief overview of the main concepts.
We start with the diffusion equation for a scalar p:

∇ · (−K∇p) = f (2.1)

with K being, in general, a full symmetric tensor describing the anisotropic diffusivity of the
material. This can be written as a system of two first-order equations (mixed formulation):

~V = −K∇p
∇ · ~V = f (2.2)

where the first is a constitutive law relating p to the velocity field ~V and the second describes
mass conservation.



Mattia Oriani, Guillaume Pierrot

2.1 Finite spaces and scalar products

We proceed to define, over a solution domain Ω, two discrete solution spaces. If d is the
number of geometric dimensions of Ω, then we have:

• d-forms: qC = a cell-centered scalar value for each cell C

• (d− 1)-forms: WF←C = a face-centered, face oriented vector value for each face F ∈ ∂C

We shall name their corresponding finite dimensional spaces Qh and Xh, respectively, borrow-
ing notation from [6]; they are graphically represented in Fig.1. Thus Qh scales with the no. of
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Figure 1: DOF location of discrete spaces Qh and Xh for a 2D mesh

cells in Ωh, and Xh with the no. of boundary faces + twice the no. of internal faces. However
we explicitly state from now that (d− 1)-forms must be conservative across each face:

WF←C+ +WF←C− = 0

i.e.
sF,C+WF + sF,C−WF = 0 (2.3)

where F is the common face between cells C+ and C− and sF,C the sign, assumed fixed once
and for all, defining the cell-face ordering between C and F; this allows to reduce the size ofXh

to the no. of faces in Ωh. Intuitively, the interpolation operator from L1(Ω) onto Qh is defined
as:

qC :=
1

|C|

∫
C

q dV ∀C ∈ Ωh ∀q ∈ L1(Ω) (2.4)

where |C| is the cell volume, while for Xh whe have:

WF←C :=

∫
F

~W · ~nF dΣ ∀F ∈ Ωh ∀ ~W ∈ H(div,Ω) (2.5)

where ~nF is the unit vector normal to F and outward w.r.t. C. The basic idea in mimetic
schemes consists in equipping Qh and Xh with scalar (inner) products that mimic certain key
properties of their continuous counterparts, and then base our discrete operators on such scalar
products.
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Following [6], we start by defining the inner product for discrete scalar variables qC , which
is fairly straight-forward:

[p, q]C,Qh := pCqC |C| ∀p, q ∈ L1(Ω) (2.6)

For the vector-valued unknowns in Xh we seek a scalar product in the form:

[~V , ~W ]C,Xh := (BC(VF←C)F∈∂C , (WF←C)F∈∂C) ∀~V , ~W ∈ H(div,Ω) (2.7)

Here, and in the sequel, (·)F∈∂C denotes a vector of size kC (number of faces delimiting cell
C) with its ith entry being a value related to the ith face of C (intended as a local index); (·, ·)
denotes the standard dot product.

The matrix BC , evidently of size kC × kC , must be defined for each cell in the mesh. The
choice of BC is the core of mimetic methods and arguably the most difficult task. Several
approaches exist: some derive equations for the matrix coefficients based on mere algebraic
properties of the scalar product (e.g. [6, 19]), others define local discrete operators first and
then deduce the matrix from those (e.g. [11, 12]). However, the common point is that we want
the inner product (2.7) to approximate the continuous one with sufficient accuracy. In particular,
we ask for the Gauss-Green theorem:∫

C

~W · ∇q dV +

∫
C

q∇ · ~W dV =

∫
∂C

q ~W · ~n dΣ (2.8)

to be satisfied in the discrete spaces, i.e.:

[ ~W,−Ghq]C,Xh + [q,Dh ~W ]C,Qh =
∑
F∈∂C

qFWF←C ∀C ∈ Ωh (2.9)

whereDh and Gh are the (not yet defined) discrete (∇·) and (−∇) operators, and qF is a discrete
value of scalar q located at the centre of face F based on the interpolation:

qF :=
1

|F |

∫
F

q dΣ ∀F ∈ Ωh ∀q ∈ L1(Ω) (2.10)

with |F | being the face area.

2.2 Definition of a divergence and flux operator

We choose here to follow an approach similar to that found in [17], where we exploit the
inner products (2.6) and (2.7) on each cell in order to build operators. Indeed, let us first define a
discrete divergence operator (quite simply a discrete version of the Gauss divergence theorem):

Dh ~W =
1

|C|
∑
F∈∂C

WF←C (2.11)

which is a mapping from Xh to Qh. Then, replacing (2.11) in (2.9) and using definition (2.6)
yields:

[ ~W,Ghq]C,Xh = ((qC − qF )F∈∂C ,WF←C) (2.12)
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where we introduced the notation:

(qC − qF )F∈∂C =


qC − qF1

qC − qF2

...
qC − qFkC

 (2.13)

Looking back at the original mixed formulation (2.2) for the anisotropic diffusion equation, it
comes natural to place the unknown pressure p in the space Qh and the unknown velocity ~V in
Xh (where, according to (2.5), it takes the form of a set of discrete fluxes). Then the discretized
constitutional equation in (2.2) in weak form reads:

[K−1~V , ~W ]C,Xh = [Ghp, ~W ]C,Xh ∀ ~W ∈ H(div,Ω) (2.14)

According to property (2.12) the right-hand side of (2.14) can be expressed as ((pC−pF )F∈∂C ,WF←C).
Hence, applying definition (2.7) to the left-hand side of (2.14) we get:

(MC(VF←C)F∈∂C , (WF←C)F∈∂C) = ((pC − pF )F∈∂C , (WF←C)F∈∂C) (2.15)

Where MC is a K-scalar product matrix, i.e. the previously discussed scalar product matrix
BC conveniently modified to incorporate the material diffusivity tensor K (more precisely, its
inverse). In other words, we re-defined the scalar product in Xh to be material-dependent:

[~V , ~W ]C,Xh := (MC(VF←C)F∈∂C , (WF←C)F∈∂C) ∀~V , ~W ∈ H(div,Ω) (2.16)

In this sense, we can consistently refer to this operator as a flux operator. Since ~W is an arbitrary
vector-valued function, (2.15) implies the following identity:

MC(VF←C)F∈∂C = (pC − pF )F∈∂C

i.e.:
(VF←C)F∈∂C = M−1

C (pC − pF )F∈∂C (2.17)

which is interpreted as the discrete approximation to:∫
F

~V · ~nF dΣ =

∫
F

−K∇p · ~nF dΣ (2.18)

In the reminder of this paper will often make use of (2.17) as a starting point to derive a complete
method as well as some additional features.

2.3 Construction of the scalar product matrix

The crucial point in mimetic methods is the construction of MC , the K-scalar product matrix
in Xh, for each cell. As stated in section 2.1, several approaches exist, but ultimately they all
impose the same specific restraints on MC . We list them here as they are expressed in [6]:

• By definition of inner product, MC must be symmetric positive definite ∀C ∈ Ωh.

• There exist two positive constants s∗ and S∗ such that ∀C:

s∗
∑
F∈∂C

|C|W 2
F ≤ [ ~W, ~W ]C,Xh ≤ S∗

∑
F∈∂C

|C|W 2
F (2.19)
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• For every linear function qI , the following must hold:

[K∇qI , ~W ]C,Xh +

∫
C

qIDh ~W dV =
∑
F∈∂C

WF←C
1

|F |

∫
F

qI dΣ (2.20)

We found in [9] a good interpretation of such restraints: (2.19) expresses a stability condition,
imposing that MC be spectrally equivalent to a scalar matrix and behaving as a mass matrix
for cell C; (2.20) is a semi-discrete Gauss-Green formula, similar to (2.9) with the addition
that it requires the scalar product to be exact where the interpolated function is linear (local
consistency).

We suggest here a simple, although somewhat naive, process to derive a suitable MC . We
start by introducing a cell-average operator for vector-valued quantities in Xh:

< ~W >C=
∑
F∈∂C

WF←C(~xF − ~xC)

|C|
(2.21)

where ~xF and ~xC are respectively the centres of gravity of face F and cell C. Lemma (2.21)
is derived from Stokes formula, proof of it can be found in e.g. the appendix of [11]. Then it
would seem natural to define our K-scalar product such that:

[~V , ~W ]avg
C,Xh = |C|(K−1

C < ~V >C , < ~W >C) (2.22)

where KC is the cell-averaged diffusion tensor. Unfortunately, expression (2.22) alone is not
sufficient to guarantee a stable scalar product. This is well shown in [14, 21], where the authors
define directly a discrete gradient based on (2.21) and verify that this gradient vanishes for
checkerboard modes (Fig.2). A trivial example in our case: over a cubic cell, if WF←C happens
to be the same on all six faces, then < ~W >C= 0 and the inner product (2.22) goes to 0
regardless of ~V . Interestingly enough, authors who follow a completely different approach,
such as [6, 9] who derive equations for the unknown MC from local consistency (2.20), get to
the same conclusion, i.e. they obtain a matrix which is only semi-definite.

Figure 2: Checkerboard modes
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Thus we are led to introduce a stabilization term, which we choose to be of the following
form:

RC(~V , ~W ) =∑
F∈∂C

λF,C

(
VF←C − |F |(< ~V >C , ~nF )

)(
WF←C − |F |(< ~W >C , ~nF )

)
(2.23)

with λF,C = O(h) (where h is some local mesh size) being a weighting factor whose precise
expression will be discussed in section 2.6.

Hence the full expression for our K-scalar product becomes:

[~V , ~W ]C,Xh = [~V , ~W ]avg
C,Xh + αCRC(~V , ~W ) (2.24)

with αC being defined to scale with K−1
C as suggested in [6, 7, 9, 18]:

αC =
trace

(
K−1
C

)
d

(2.25)

where d is the dimension of the geometrical space.
One can easily verify that the stabilization term is consistent as it vanishes for constant vector

fields on the cell and that it makes the K-scalar product positive definite. In fact one can show
that the stability property (2.19) holds.

Another easy property to verify is that the inner product in the form (2.24) satisfies (2.20).

Proof Let us assume that ~V = ∇qI ; qI is linear, hence ~V is constant. Then < ~V >C= ~V , and
VF←C =

∫
F
~V · ~nF dΣ = |F |(< ~V >C , ~nF ), thus the stabilization term vanishes; we are left,

replacing (2.21) in (2.22), with:

[K∇qI , ~W ]C,Xh = |C|

(
∇qI ,

∑
F∈∂C

WF←C(~xF − ~xC)

|C|

)
(2.26)

Since qI is linear, it follows that (∇qI , (~xF − ~xC)) = qIF − qIC and we write, by using basic dot
product properties:

[K∇qI , ~W ]C,Xh =
∑
F∈∂C

qIFWF←C − qIC
∑
F∈∂C

WF←C (2.27)

which, considering definitions (2.4), (2.10) and (2.11), is identical to our local consistency
condition (2.20).

It is worth mentioning that the choice of the stabilization term is not unique, implying that, as
[6] points out, there is not a unique admissible MC .

The reason for this is well explained in [7] where it is argued that, under some assumptions
on the magnitude of the scaling factor in the stabilization term, if we defined a certain lifting (re-
construction) for quantities VF and WF and integrated the scalar product between such liftings
over cellC, the result would be equivalent to that obtained via an expression of type (2.24), with
the stabilization term depending on the specific reconstruction. In other words, we managed to
define a scalar product (or better, a family of admissible scalar products, as [6] clarifies) between
two functions lifted from the discrete space Xh, but without having to explicitly compute any
shape functions. This consideration justifies the recasting of this family of approaches under
the name Virtual Element Method (VEM).
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2.4 Inversion of the local inner product matrix

It will be shown in the next section that most solution strategies require knowledge of the
inverse of MC for each cell (in fact, some require explicit knowledge of M−1

C only). Some
authors, e.g. [6, 18], have devised ways of computing M−1

C directly, while others, like [11],
choose to invert MC via direct methods, which is computationally feasible since the matrix
size scales with kC , which is presumably small enough. In our case we worked out a way of
computing M−1

C which only requires direct inversion of a d × d matrix for each cell, hence
making the computational cost of the inversion fully independent of mesh complexity. More
precisely we have that:

δCKp = M−1
C (pC − pF )F∈∂C

= −
(
|F |(KC∇G

Cp, ~nF ) + α−1
C λ−1

F,C

{
pF − pC −

(
∇L
C p, (~xF − ~xC)

)})
F∈∂C(2.28)

where ∇G
C and ∇L

C are two linearly consistent approximate gradients, respectively based on
Green-Gauss formula and least-square approach:

∇G
Cp =

1

|C|
∑
F∈∂C

pF~nF |F | (2.29)

∇L
C p = argmin

A ∈Rd

∑
F∈∂C

λ−1
F,C {pF − pC − (A , (~xF − ~xC))}2 (2.30)

Proof Let ~VC = (VF )F∈∂C . by denoting ṽC = ~VC − |F |
(
< ~V >C , ~nF

)
F∈∂C

, we have the
following decomposition:

~VC = |F |
(
< ~V >C , ~nF

)
F∈∂C

+ ṽc (2.31)

and subsequently:

[~V , ~W ]C,Xh = |C|
〈
K−1
C < ~V >,< ~W >

〉1

Rd
+ αC 〈ṽ, w̃〉λR|∂C| (2.32)

where 〈·, ·〉µRn denotes the µ-weighted canonical inner product of Rn and for sake of readability
we have skipped the C indices. Hence, by using (2.17) we get:

[δK p, ~W ]C,Xh = |C|
〈
K−1
C < δK p >,< ~W >

〉1

Rd
+ αC

〈
˜δK p, w̃

〉λ
R|∂C|

=
〈{
λ−1
F,C (pC − pF )

}
F∈∂C ,

~W
〉λ
R|∂C|

(2.33)

At first let’s consider any vector ~WC ∈ R|∂C| satisfying:

~WC = |F |
(
< ~W >C , ~nF

)
F∈∂C

(2.34)

From (2.33) it comes immediately that:

|C|
〈
K−1
C < δK p >,< ~W >

〉1

Rd
=
〈{
λ−1
F,C (pC − pF )

}
F∈∂C ,

~W
〉λ
R|∂C|

(2.35)
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Now as the subspace of R|∂C| corresponding to (2.34) is obviously equal to span {eα}α=1···d
where {eα}α=1···d is the canonical basis of Rd and using the exactness of the average (2.21) on
constant vector fields, we deduce that:

|C|
〈
K−1
C < δK p >, eα

〉1

Rd =
∑
F∈∂C

(pC − pF )nαF |F |

= −
∑
F∈∂C

pF n
α
F |F | (2.36)

Hence:

< δK p >C= −KC ∇G
C p (2.37)

Now, lets’s consider any vector ~WC ∈ R|∂C| satisfying:

~WC = ṽC (2.38)

From (2.33) it comes that:〈
αC ˜δK p, w̃

〉λ
R|∂C|

=
〈{
λ−1
F,C (pC − pF )

}
F∈∂C ,

~W
〉λ
R|∂C|

=
〈{
λ−1
F,C (pC − pF )

}
F∈∂C , w̃

〉λ
R|∂C|

(2.39)

Hence:

˜δK p = α−1
C P⊥,λ

F

({
λ−1
F,C (pC − pF )

}
F∈∂C

)
(2.40)

where P⊥,λ
F denotes the orthogonal projection on F according to the λ-weighted inner product

of R|∂C| and F is the space of all vectors satisfying (2.38). But using the definition of the cell
average (2.21) we have that:

F =
(
Gλ = span

{((
λ−1
F,C (xαF − xαC)

)
F∈∂C

)
α=1···d

})⊥,λ
(2.41)

Hence:

˜δK p = α−1
C

{{
λ−1
F,C (pC − pF )

}
F∈∂C −P⊥,λ

Gλ

({
λ−1
F,C (pC − pF )

}
F∈∂C

)}
(2.42)

With some obvious rescaling we deduce further that:(
˜δK p
)
F

= α−1
C λ−1

F,C

{
(pC − pF )−

(
P⊥,λ−1

G1

(
{(pC − pG)}G∈∂C

))
F

}
= α−1

C λ−1
F,C

{
(pC − pF )−∇L

C p · (~xC − ~xF )
}

(2.43)

and, as anticipated, we notice that ∇L
C p may be computed by inverting a d × d system only,

using:

∇L
C p = X−1

C

(〈
{pF − pC}F∈∂C , {x

α
F − xαC}F∈∂C

〉λ−1

R|∂C|

)
1≤α≤d

(2.44)

with:

XC =

(〈
xαC − xαF , x

β
C − x

β
F

〉λ−1

R|∂C|

)1≤β≤d

1≤α≤d
(2.45)
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2.5 Solution strategy for pure diffusion

Once all necessary operators have been assembled we can easily construct the discrete linear
system for the whole problem. From (2.17), let us consider one face F interfacing elements C+
and C−. The same face-centered pressure value then appears in two equations:

pF = pC+ − (MC+(VG←C+)G∈∂C+, δFG)

pF = pC− − (MC−(VG←C−)G∈∂C−, δFG) (2.46)

where δFG is the Kronecker delta. Therefore we can write:

sF,C+ (pC+ − (MC+(sG,C+VG)G∈∂C+, δFG)) +

sF,C− (pC− − (MC−(sG,C−VG)G∈∂C−, δFG)) = 0

∀F ∈ Ωh (2.47)

where we also made use of the notion of flux conservation (2.3). Writing (2.47) for all faces
provides the constitutive law in (2.2) discretized over Ωh. Mass conservation is discretized on
each cell via the divergence operator (2.11):

((sF,CVF )F∈∂C ,1) = fC |C| (2.48)

Hence the discretised anisotropic diffusion equation (minus boundary conditions) on Ωh takes
the form: [

H G
GT 0

](
(VF )F∈Ωh

(pC)C∈Ωh

)
=

(
0

(fC |C|)C∈Ωh

)
(2.49)

Matrix H can be formally referred to as a *Hodge operator, as it constitutes a linear mapping
from d-forms to (d − 1)-forms. Explicitation of the coefficients of H shows that the operator
is symmetric (and positive definite, as expected since it represents a discrete scalar product
integrated over the whole mesh). Hence the linear system in (2.49) is evidently symmetric and
saddle-point. Several techniques have been devised to solve it (see [4]); a popular strategy is
to build an approximate Schur Complement (which in turns requires an approximation to the
inverse of H), which is then used to precondition the system and solve iteratively.

Here hovever we choose to solve via hybridization, similarly to what is typically done in
FEM. Taking again the flux as expressed in (2.17), substitution in (2.48) gives:(

MC
−1(pC − pF )F∈∂C ,1

)
= fC |C| (2.50)

from which we explicitate the cell-centered pressure:

pC =
fC |C|+ (M−1

C 1, (pF )F∈∂C)

(M−1
C 1,1)

(2.51)

Reinjecting this in (2.17) we obtain an expression for the flux VF←C in terms of pF only. Finally,
by imposing flux conservation (2.3) across each face, we obtain a linear system in the form:

H̃(pF )F∈Ωh = ( ˜RHSF )F∈Ωh (2.52)

It it easy to verify that in order to compute coefficients of H̃ one only needs knowledge of the
inverse of matrix MC for each cell, which we compute as explained in section 2.4; we also
observe that H̃ is symmetric positive definite. The unknowns in (2.52) are the face-centered
values of pressure, from which pC and VF can be retrieved in that order through (2.51) and
(2.17) respectively.
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2.6 Relashionship with classical Finite Volumes

In this paragraph we will consider the case of isotropic scalar diffusion, meaning KC = kCI.
In this case the expression (2.28) simplifies to:

δCk p = −kC
(
∇G
C p · ~F + λ−1

F,C

{
pF − pC −∇L

C p · (~xF − ~xC)
})

F∈∂C
(2.53)

Following [15] in classical FV method one has to distinguish between two distinct situations,
whether we are considering an orthogonal mesh (meaning vectors d and S as defined in Fig.3
are parallel) or on a general mesh.

Figure 3: Vectors d and S on non-orthogonal mesh

When the mesh is orthogonal, the face gradient at an internal face may be expressed by the
2-points scheme:(

δCk p
)FV

=

{
< kC , kC′ > sF,C |F |

pC′ − pC
‖xC′ − xC‖

}
F∈∂C

(2.54)

where C ′ denotes the only other cell in the mesh sharing the face F with C and < kC , kC′ > is
some 2-points face averaging of the diffusion coefficient. On can use for example the arithmetic
average:

< kC , kC′ >=
kC + kC′

2
(2.55)

When the mesh is non-orthogonal, on the other hand, which as stated in [15] is more of a rule
than an exception, one has to introduce a splitting of the kind:

~F = αF sF,C (~xC′ − ~xC) + ~τF (2.56)

where αF is (hopefully) some positive coefficient. The face gradient is subsequently computed
through:

(
δCk p

)FV
=

< kC , kC′ >

αF sF,C (pC′ − pC)︸ ︷︷ ︸
orthogonal term

+ ”∇F p · ~τF”︸ ︷︷ ︸
NOC



F∈∂C

(2.57)
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where the Non-Orthogonal Corrector (NOC) may be computed using interpolated node values,
like in diamond schemes [10], or using cell gradients [15].

It is worth mentioning that the solution algorithm for such FV schemes is usually semi-
implicit, using the deferred correction method [20] with the orthogonal term being treated im-
plicitly while the NOC is added to the right-hand side, making the convergence behaviour of
the method dependent on the orthogonality of the mesh. Even more problematic is the fact that,
as the mesh non-orthogonality increases, the iterative correction can become unbounded [20],
hence requiring some limiting procedure of the kind (with typical values for µ ranging from
0.333 to 0.5):

|”∇F p · ~τF”| ≥ µ |αF (pC′ − pC)| (2.58)

that surely degrades the accuracy of the scheme. Another important remark is that the face gra-
dient is no longer approximated using a 2-points scheme but is now discretized with a Multipoint
Flux Approximation (MPFA) [1]. Furthermore the discretized system is usually non-symmetric,
thus violating a fundamental property of the continuous problem.

[15] gives 3 examples of face vector splitting of the form (2.56):

• minimal correction:

αF = sF,C
(~xC′ − ~xC) · ~F
‖~xC′ − ~xC‖2

• orthogonal correction:

αF =
|F |

‖~xC′ − ~xC‖

• over-relaxed correction:

αF = sF,C
|F |2

(~xC′ − ~xC) · ~F

It is worth mentioning that neither the minimal correction nor the over-relaxed correction ap-
proach guarantee the positivity of αF when sF,C (~xC′ − ~xC) · ~F becomes negative (which may
happen only for non-convex cells), with the over-relaxed approach even presenting some sin-
gularity at the change of sign. On a large variety of meshes however the positivity holds and
[15] demonstrates numerically the superiority of the over-relaxed approach when the degree
of non-orthogonality increases, with fairly robust behaviour for meshes with angles of non-
orthogonality up to 65 degrees.

Going back to the Mixed Virtual Element approach, we will now consider symmetric face
coefficients of the form:

λF = λF,C = λF,C′ = µF
‖~xC′ − ~xC‖

2 |F |
(2.59)

with µF being some positive weight. By making use of the flux conservation (2.3) and one-sided
flux expression (2.53) one gets:(

δCk p
)
F

=
2 kC kC′

kC + kC′

{
sF,C µF |F |

pC′ − pC
‖~xC′ − ~xC‖

+ T NOC
F

}
(2.60)

with:

T NOC
F =

(
∇G
C p+∇G

C′ p
)

2
· ~F − sF,C µF

(
∇L
C p · (~xF − ~xC) +∇L

C′ p · (~xC′ − ~xF )
)

(2.61)
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in which we can observe obvious similarities with (2.57) by identifying

αF = µF
|F |

‖~xC′ − ~xC‖

and
< kC , kC′ >=

2 kC kC′

kC + kC′

Playing on the value of µF , one can then retrieve Mixed Virtual Element analogous of the
minimal correction, the orthogonal correction and the over-relaxed correction schemes. The
difference is that this time the solution method is fully implicit, making the efficiency of the
scheme independent of mesh orthogonality, and the fact that the symmetry of the continuous
problem is preserved.

Notice that we may also choose to define non-symmetric face weights, i.e. different depend-
ing on which side of F we are considering. It is sufficient to replace the distance between cell
centres with the distance between face and cell centre:

• orthogonal non-symm:

λF,C =
‖~xF − ~xC‖
|F |

• over-relaxed non-symm:

λF,C =
(~xF − ~xC) · ~nF

|F |

One last remark is in order: in case we are running on a fully Cartesian mesh, additional sym-
metry properties provide that:

∇L
C p = ∇G

C p

Hence we see, thanks to (2.60), that we retrieve the classical FV 2-points scheme for any of the
aforementioned choices of µF .

3 CONVECTION-DIFFUSION-REACTION

Based on the framework for pure anisotropic diffusion described in the previous section, we
now proceed to add the terms required to discretise the convection-diffusion-reaction equation:

∇ · (−K∇p+ ~Up) + ap = f (3.1)

where ~U is the convective field and a the reaction coefficient. Again, we split the problem in
two first-order equations:

~V = −K∇p+ ~Up

∇ · ~V + ap = f (3.2)

3.1 Discretization of the convective term

The diffusive term is discretized via the flux operator built in section 2.2. Addition of a
discretized convective term leads to:

VF←C =
(
MC

−1(pC − pG)G∈∂C , δFG
)

+ ApF +BpC (3.3)
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where coefficients A and B depend on the specific strategy adopted to evaluate the convective
flux on each face. Following the ideas expressed in [22] we formulate a unified approach to
handle this, limiting our choice for now to four strategies: hybrid centered, mixed centered,
hybrid 1st-order upwind and hybrid θ-scheme.

These are essentially equivalent to their classical FV homonyms with the difference that, in
our framework, scalar fields evaluated at cell faces exist naturally as degrees of freedom of the
problem; as suggested by [13], we take advantage of this by using these variables directly rather
than resorting to averaging procedures which may affect the consistency of the method. Hence,
hybrid centering simply takes the face-centered pressure pF as the convected quantity; hybrid
1st-order upwinding takes pC if cell C is upwind w.r.t. F , pF otherwise; the θ-scheme is an
intermediate choice between these two; and mixed centering is the equivalent to a FV weighted
2-points scheme. This leads to the following unified formulation:

VF←C = (NC(pC − pG)G∈∂C , δFG) + ϕF,CpC (3.4)

where:

ϕF,C = (UF←C) (3.5)

(i.e. the convective flux through face F as seen from cell C, projected onto Xh via (2.5)) and:

NC = MC
−1 − diag(ΛG,C)G∈∂C (3.6)

with:

ΛG,C =


ϕG,C for hybrid centering
0 for mixed centering
min(0, ϕG,C) for hybrid 1st-order upwinding
min(θϕG,C , ϕG,C) for hybrid θ-scheme

(3.7)

3.2 Solution strategy for convection-diffusion-reaction

The unified framework makes it possible to assemble the convection-diffusion-reaction oper-
ator for the whole domain with minimal modifications to what we did in section 2.5 for the pure
diffusion case. In particular, the whole system (before applying boundary conditions) takes the
form: [

HN T
GT A

](
(VF )F∈Ωh

(pC)C∈Ωh

)
=

(
0

(fC |C|)C∈Ωh

)
(3.8)

Here the *Hodge matrix HN is formally equivalent to H in (2.49), with the difference that its
coefficients are based on NC rather than MC ; T is equivalent to G with the addition of convective
coefficients as expressed in (3.5); A is simply a diagonal matrix holding the reaction coefficient
integrated over each cell: aC |C| .

System (3.8) is no longer saddle-point nor symmetric. However it is still possible to hybridize
as above, i.e. by explicitating the cell-centered pressure:

pC =
fC |C|+ (NC1, (pF )F∈∂C)

(NC1,1) + ((ϕF,C)F∈∂C ,1) + aC |C|
(3.9)

then re-injecting in (3.4) and imposing flux conservation (2.3), which again yields a system
where the unknowns are the face-centered pressures:

H̃N(pF )F∈Ωh = ( ˜RHSNF )F∈Ωh (3.10)

Solution to (3.10) is then used to retrieve pC and VF , in that order, via (3.9) and (3.4).
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3.3 Stability estimate

In this paragraph we will consider the case of pure convection-diffusion problem and make
the assumption that∇ · ~U ≥ 0 and

UF←C =

∫
F

~U · ~nF dΣ

With the help of previously defined notations one may write the following estimate:∑
C

〈
NC (pF − pC)F∈∂C , (pF − pC)F∈∂C

〉
R|∂C|

+
1

2

∑
C

∑
F∈∂C

ϕF,C (pF − pC)2 +
1

2

∑
C

(

∫
C

∇ · ~U dx) p2
C =

∑
C

|C|fC pC (3.11)

Proof By virtue of continuity of the convective flux at the interfaces and (3.2) we get that:∑
C

∑
F∈∂C

VF←C (pC − pF ) =
∑
C

(∑
F∈∂C

VF←C

)
pC

=
∑
C

(

∫
C

∇ · ~V dx)pC

=
∑
C

|C| fCpC (3.12)

On the other hand, we have thanks to the unified framework notations (3.4):∑
C

∑
F∈∂C

VF←C (pC − pF ) =
∑
C

〈
NC (pF − pC)F∈∂C , (pF − pC)F∈∂C

〉
R|∂C|

+
∑
C

∑
F∈∂C

ϕF,C pC (pC − pF ) (3.13)

The second term on the right-hand side can be further decomposed:∑
C

∑
F∈∂C

ϕF,C pC (pC − pF ) =
∑
C

∑
F∈∂C

ϕF,C (pC − pF )2

+
∑
C

∑
F∈∂C

ϕF,C pF (pC − pF ) (3.14)

By making use again of flux continuity it comes then:∑
C

∑
F∈∂C

ϕF,C pC (pC − pF ) =
∑
C

∑
F∈∂C

ϕF,C (pC − pF )2

+
∑
C

∑
F∈∂C

ϕF,C pF pC

=
∑
C

∑
F∈∂C

ϕF,C (pC − pF )2

−
∑
C

∑
F∈∂C

ϕF,C pC (pC − pF )

+
∑
C

(

∫
C

∇ · ~U dx) p2
C (3.15)
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From which we deduce that:∑
C

∑
F∈∂C

ϕF,C pC (pC − pF ) =
1

2

∑
C

∑
F∈∂C

ϕF,C (pC − pF )2 +
1

2

∑
C

(

∫
C

∇ · ~U dx) p2
C

which concludes the proof.

Applying the stability estimate (3.11) in case of the hybrid centered scheme gives:∑
C

〈
M−1

C (pF − pC)F∈∂C , (pF − pC)F∈∂C
〉
R|∂C|

−1

2

∑
C

∑
F∈∂C

ϕF,C (pF − pC)2 +
1

2

∑
C

(

∫
C

∇ · ~U dx) p2
C =

∑
C

|C|fC pC (3.16)

the second term
−1

2

∑
C

∑
F∈∂C

ϕF,C (pF − pC)2

in the equation is the one that is problematic because ϕF,C has no definite sign. It can be either
positive or negative. Of course, as M−1

C = O(h) and ϕF,C = O(h2), the positive diffusive term
will ultimately dominate, but when the Peclet number is big, the tipping point may be delayed
to very fine meshes that cannot be afforded in practice.

For the mixed centered scheme, the estimate is similar:∑
C

〈
M−1

C (pF − pC)F∈∂C , (pF − pC)F∈∂C
〉
R|∂C|

+
1

2

∑
C

∑
F∈∂C

ϕF,C (pF − pC)2 +
1

2

∑
C

(

∫
C

∇ · ~U dx) p2
C =

∑
C

|C|fC pC (3.17)

leading to the same problematic.
For the hybrid upwind scheme however the estimate is more favourable. Indeed it gives:∑

C

〈
M−1

C (pF − pC)F∈∂C , (pF − pC)F∈∂C
〉
R|∂C|

+
1

2

∑
C

∑
F∈∂C/ϕF,C≥0

ϕF,C (pF − pC)2 − 1

2

∑
C

∑
F∈∂C/ϕF,C≤0

ϕF,C (pF − pC)2

+
1

2

∑
C

(

∫
C

∇ · ~U dx) p2
C =

∑
C

|C|fC pC (3.18)

This time the scheme is clearly stable in an appropriate norm involving variations of the scalar
variable. In fact the estimate shows that we even have some room for reduced dissipation.
Indeed, if instead of taking pC as the face value when the flux is upwind we choose θ pF + (1−
θ) pC , we get the following estimate ∑

C

〈
M−1

C (pF − pC)F∈∂C , (pF − pC)F∈∂C
〉
R|∂C|

+
1− 2 θ

2

∑
C

∑
F∈∂C/ϕF,C≥0

ϕF,C (pF − pC)2 − 1

2

∑
C

∑
F∈∂C/ϕF,C≤0

ϕF,C (pF − pC)2

+
1

2

∑
C

(

∫
C

∇ · ~U dx) p2
C =

∑
C

|C|fC pC (3.19)

Thus we can see that as long that θ stays bounded below 0.5 the scheme remains stable.
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4 NUMERICAL RESULTS

The development of a code fully capable of solving according to the methodologies outlined
in the previous sections is still very much in progress. However we find appropriate to include
here and comment on a few preliminary results.

4.1 Pure anisotropic diffusion test case

A first validation of the method is done by solving for a test case of 2D pure anisotropic
diffusion. We choose the benchmark case proposed by [6, 16], where we solve (2.1) in the unit
square Ω =]0, 1[×]0, 1[. The diffusion tensor is taken as:

K =

(
(x+ 1)2 + y2 −xy
−xy (x+ 1)2

)
and the source term is calculated such that the exact solution is:

pex(x, y) = x3y2 + x sin(2πxy) sin(2πy)

We use a mix of Dirichlet, Neumann and Robin boundary conditions on the four sides of Ω.
Literature suggests testing on a polygonal unstructured mesh based on the dual to a Voronoi

tessellation, generated via the algorithm described in [22] and shown in Fig.4 for two different
values of refinement h; such mesh features strongly skewed and non-orthogonal cells, which
makes it suitable to test the capabilities of mimetic methods. Since the analytical solution is
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(a) h=0.1

0

0.2

0.4

0.6

0.8
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(b) h=0.02

Figure 4: Polygonal mesh for different h

available, we can perform an h-convergence test by measuring, for different degrees of mesh
refinement, the error on p and ~V in terms of both maximum norms in the Euclidean space and
natural norms, based on discrete scalar products (2.6) and (2.16):

‖pex − p‖ = [pex(xC , yC)− pC , pex(xC , yC)− pC ]
1/2

C,Qh

‖~Vex − ~V ‖ = [(~Vex(xF , yF ), ~nF )− VF←C , (~Vex(xF , yF ), ~nF )− VF←C ]
1/2

C,Xh
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For the sake of comparison we performed the same computation on progressively refined Carte-
sian meshes as well. In Fig.5 we plot the error norms against h in logarithmic scale and analyze
their linear regression to see convergence rates; we also include for pC and VF the equation
obtained via linear regression. In all cases we observe second order convergence for p (both

(a) Polygonal mesh

(b) Cartesian mesh

Figure 5: Pure diffusion: h-convergence for different meshes

cell-centered and face-centered); as for the flux V , we observe linear or super-linear conver-
gence, which deteriorates as the mesh quality worsens. These results are in perfect agreement
with the theoretical findings expressed by [5].

4.2 Comparison between different choices of λF
We discussed in section 2.6 how the choice of weight λF,C in (2.23) is not unique, and vari-

ous expressions of it can reduce the MFD formulation to various classical FV formulations for
orthogonal meshes. We now want to compare how different weight types perform on progres-
sively non-orthogonal meshes (such progressive distortion is represented in Fig.6, on a coarse
mesh initially Cartesian). When naming the weight types, the absence of suffix ” sym” means
that we are using the non-symmetric weight expressions as explained in section 2.6. Again we
carry out our tests on two types of 2D mesh, one polygonal unstructured and the other quadri-
lateral, and we solve for the same exact solution as in the previous section, but with isotropic
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Figure 6: Progressive distortion of a structured mesh

(scalar) diffusivity:

K(x, y) = (1 + xy)I

We take as an indicator of non-orthogonality the minimum value of cos θF found in the mesh,
with θF being the angle between the face-normal ~nF and the distance between the centres of the
two cells adjacent to F : smaller values indicate higher non-orthogonality.

cos θF orthogonal over-relaxed orthogonal sym over-relaxed sym minimal sym
0.83 5.63E-004 4.50E-004 5.51E-004 4.45E-004 6.94E-004
0.64 6.28E-004 5.20E-004 6.19E-004 5.19E-004 7.90E-004
0.20 1.34E-003 1.02E-003 1.35E-003 1.02E-003 2.32E-003

6.74E-2 4.16E-003 3.32E-003 4.22E-003 3.31E-003 8.02E-003
2.41E-2 1.42E-002 1.14E-002 1.42E-002 1.15E-002 3.98E-002

Table 1: Polygonal mesh: effect of mesh non-orthogonality for different expressions of λF

cos θF orthogonal over-relaxed orthogonal sym over-relaxed sym minimal sym
1.00 5.78E-004 5.78E-004 5.78E-004 5.78E-004 5.78E-004
0.81 6.78E-004 6.52E-004 6.78E-004 6.52E-004 7.06E-004
0.32 1.64E-003 1.15E-003 1.64E-004 1.15E-003 7.72E-003

1.00E-1 9.21E-003 3.26E-003 9.14E-003 3.24E-003 6.53E-002
3.65E-2 1.52E-002 8.34E-003 1.47E-002 8.21E-003 2.01E-002

Table 2: Quadrilateral mesh: effect of mesh non-orthogonality for different expressions of λF

Results are reported in table 1 and 2 for polygonal and quadrilateral meshes, respectively,
where we output the error on pC in natural norm. We observe first of all that all weights produce
similar results in terms of order of magnitude, with a slight superiority of the over-relaxed cor-
rectors and a deterioration of the minimal symmetric one for higher values of non-orthogonality.
This is in agreement with what expressed by [15], with the difference that thanks to the VEM
framework the error remains acceptable on any mesh as we claimed in section 2.6.
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At a first glance it would appear that the error does increase with mesh non-orthogonality,
which would directly contradict the claims we previously made regarding independency of
MFD methods from mesh regularity. We believe however that this effect is not linked to or-
thogonality at all. It is evident from Figure 6 that the algorithm we use to distort our mesh
doesn’t just affect mesh orthogonality, but also local coarseness. Such algorithm however does
not affect the boundary faces, and since we (naively) take their area h as indicator of refine-
ment we get a series of meshes that, although nominally all equivalent in terms of coarseness,
feature in certain zones some cell volumes and face areas so large with respect to the original
Cartesian grid that they have significant impact on the error, hence the comparison is somewhat
invalidated.

Such hypothesis is partially confirmed by the fact that all our h-convergence tests produced
positive results regardless of the degree of non-orthogonality (in fact, despite the mesh refine-
ment process negatively affecting mesh orthogonality); however further verifications are due,
on meshes that are actually equivalent coarseness-wise but different orthogonality-wise.

4.3 Convection-diffusion test case

We now run a simple numerical experiment for a 2D convection-diffusion test case; we
report here the results obtained on the same type of unstructured mesh (Fig.4). We choose a
linear exact solution:

pex(x, y) = 2x+ 3y

and a material diffusivity ν which is isotropic and constant across Ω. As for the convective
field ~U , for the first test case we set it to also be constant. This constitutes a patch test: since
we claimed that the scalar product (2.16) is exact for linear functions, and the interpolator
(2.5) is also exact for a constant convective flux, we expect the results to match the analytical
solution down to machine precision. We choose to solve via a hybrid strategy and we test on all
four convective schemes described in section 3.1 (for the θ-scheme we set θ = 0.49 to ensure
stability).

We test for different values of the Peclet number Pe = |~U |/ν, making the value of ν increas-
ingly smaller so that the problem becomes more and more convection-dominated; we report in
table 3 the measured errors on pC in natural norm.

Pe hyb. centered mix. centered hyb. 1st upwinding hyb. θ-scheme (0.49)
1.41E+000 5.73E-015 3.72E-005 1.95E-004 9.98E-005
1.41E+001 3.91E-014 3.56E-004 1.68E-003 8.88E-004
1.41E+002 1.44E-015 2.52E-003 5.84E-003 3.71E-003
1.41E+003 2.09E-012 5.77E-003 9.88E-003 8.87E-003
1.41E+004 3.57E-010 6.50E+000 1.10E-002 1.10E-002
1.41E+005 6.27E-009 9.98E-001 1.11E-002 1.13E-002
1.41E+006 2.53E-007 6.22E+000 1.11E-002 1.13E-002
1.41E+007 1.21E-006 6.59E+001 1.11E-002 1.13E-002
1.41E+008 5.99E-005 6.63E+002 1.11E-002 1.13E-002

Table 3: Convection-diffusion with linear pex, measure of error on pC

We observe that, at least for ”reasonable” values of Pe, we indeed get the exact solution when
convective terms are discretized via the hybrid centered strategy, while other schemes produce
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a less precise solution. This is expected: hybrid centering always takes the value of pF as the
convected quantity (which is indeed the exact value, since both the face interpolator (2.10) and
the scalar product (2.16) are exact for linear functions); mixed-centering and upwinding, on the
other hand, are sources of discretization error and therefore yield less precise results. It is also
observed that, for higher Pe, hybrid centering ceases to produce the exact solution and the error
seems to become unbound: we argue that this effect is due to the fact that too high values of
Pe affect the condition number of the matrix in system (3.10) to a point where a standard linear
solver is no longer capable of handling it.

We then run a second set of tests, this time seeking a nonlinear scalar field:

pex(x, y) = 2x2 + cos(2πxy2)

with a linear conservative, but not constant, convective field:

~U(x, y) =

(
10x+ 2
3x− 10y

)

Pe hyb. centered mix. centered hyb. 1st upwinding hyb. θ-scheme (0.49)
8.53E+000 1.87E-004 4.34E-004 2.58E-003 1.33E-003
8.53E+001 1.60E-004 2.76E-003 9.43E-003 5.51E-003
8.53E+002 1.89E-004 3.73E+002 1.72E-002 1.37E-002
8.53E+003 4.22E+000 3.25E+002 2.05E-002 2.00E-002
8.53E+004 1.81E+000 3.34E+000 2.11E-002 2.14E-002
8.53E+005 5.16E+000 4.61E+000 2.11E-002 2.16E-002
8.53E+006 1.33E+001 1.29E+001 2.11E-002 2.16E-002
8.53E+007 5.36E+001 1.44E+002 2.11E-002 2.16E-002
8.53E+008 4.81E+002 1.47E+003 2.11E-002 2.16E-002

Table 4: Convection-diffusion with nonlinear pex, measure of error on pC

Results are reported in table 4. As expected, both centering strategies yield reliable results
for low values of Pe but, as the problem becomes more convection-dominated, the solution
becomes unreliable. The error on upwinding and θ-scheme, on the other hand, ceases to grow
after a certain Pe and becomes bound; in fact, the same behaviour was already evident in the
patch test, table 3. We also notice that in both cases, when applying the θ-scheme, results are
very similar to those obtained via upwinding with a slight improvement at low-Pe and a slight
deterioration at high-Pe; that makes sense since this scheme is effectively a trade-off between
centering and upwinding, hence there will be a range of Pe for which the chosen value of θ
is optimal. Therefore it would be convenient to have a θ that varies according to the local
diffusivity; this what the Scharfetter-Gummel scheme does, see [13, 22].

5 CONCLUSIONS

Mimetic discretizations surely represent a promising new technology for computational en-
gineering in general, including CFD, thanks to their superior consistency with respect to tradi-
tional methods and better convergence properties. As we said, they are particularly appealing
in the context of optimization thanks to the extra freedom on element shapes, which is an enor-
mous advantage in e.g. shape optimization processes featuring mesh-adaptation algorithms;
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furthermore, both continuous and discrete CFD adjoint systems for gradient computation may
benefit greatly (in terms of robustness) from a better converged and more consistent primal flow
field.

In the present paper we outlined the MFD philosophy and presented our own implementa-
tion. Our preliminary numerical results on a pure anisotropic diffusion test case are in perfect
agreement with previous literature and confirm the superiority of the method in terms of con-
vergence properties; our results for 2D convection-diffusion cases are also quite encouraging,
showing how the method can be extended with relative ease to cater for this type of problem as
well.

In the near future we plan to a) explore more sophisticated ways of discretizing convec-
tion terms (some already dealt with in [22]), including 2nd order schemes; b) implement an
incompressible steady-state Navier-Stokes solver using a SIMPLE-like preconditioner (which
is feasible since we already have all the necessary tools to solve both convection-diffusion and
Poisson equations) c) investigate alternative solution strategies for the Navier-Stokes and how
they translate into the MFD framework.

Once the basic mimetic CFD solver will be fully validated and proven to be robust enough, it
will then be possible to tackle more ”advanced” issues (e.g. the inclusion of turbulence models);
finally, we will move on to attempt a mimetic discretization of an adjoint system and assess the
benefits that MFD brings about in that context.
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