Improving Efficiency of a Discrete Adjoint CFD
Code for Design Optimization Problems

Zahrasadat Dastouri and Uwe Naumann

Abstract Sensitivity analysis with the aim of design optimization is a growing area
of interest in Computational Fluid Dynamics (CFD) simulations. However, one of
the major challenges is to deal with a large number of design variables for large-
scale industrial applications. One of the effective solution approaches is to com-
pute adjoint-based sensitivities in the differentiated CFD code. In this paper, we
develop a discrete adjoint code for an unstructured pressure-based steady Navier-
Stokes solver using Algorithmic Differentiation (AD) by operator overloading (O-
O) tool. To reduce the huge memory requirement of the adjoint code we apply ef-
fective techniques by implementation of checkpointing schemes and by symbolic
differentiation of the iterative linear solver. We combine the flexibility of an op-
erator overloading tool with the efficiency of an adjoint code generated by source
transformation through coupling these approaches. Moreover, we improve the per-
formance of the adjoint computation by exploiting the mathematical aspects of the
involved fixed-point iteration through reverse accumulation. We compare the effec-
tiveness of these methods in terms of reduction of the numerical cost and accuracy
of the sensitivities for the optimization of a vehicle climate duct industrial test case.

1 Introduction

Design optimization for fluid flow plays a significant role in a wide range of engi-
neering applications including aeronautics [9, 4], turbo-machinery [11] and auto-
motive design [13, 14]. The shape of objects in the flow domain, or on the boundary

Zahrasadat Dastouri
Software and Tools for Computational Engineering (STCE),RWTH Aachen, LuFG Informatik 12,
D-52062 Aachen, Germany e-mail: dastouri @stce.rwth-aachen.de

Uwe Naumann
Software and Tools for Computational Engineering (STCE),RWTH Aachen, LuFG Informatik 12,
D-52062 Aachen, Germany e-mail: naumann @stce.rwth-aachen.de

2 Zahrasadat Dastouri and Uwe Naumann

of the flow domain, is one means of controlling the flow. Finding the shape for such
an object that delivers the best possible performance of the fluid flow system in a
quantitatively measurable sense leads to a shape optimization problem. In realis-
tic configurations, the optimization problem scales with the large number of design
parameters and constraints. The effect of independent design variables on the sys-
tem performance can be calculated in terms of sensitivities that are the derivatives of
one or more quantities (outputs) with respect to one or several independent variables
(inputs). By default, these derivatives can be obtained by divided (finite) differences
from perturbed solutions. This method is both costly and subject to inaccuracies.

Algorithmic Differentiation (AD) [12, 7] is a well known technique to evaluate
derivatives based on the application of the chain rule of differentiation to each opera-
tion in the program flow. For a given implementation of the flow model F' : R* — R™
over a computational grid, the computer program is developed to simulate the func-
tional dependence of one or more objectives y € R™ on a potentially large number
of the input variables x € R” by simulation of:

F:R"—=R"y=F(x) (1

AD enables us to compute the corresponding % derivatives in forward (forward
mode) or backward (reverse mode). There are two main methods for implementing
AD: by source code transformation (S-T) or by used of derived data types and oper-
ator overloading (O-0O). In O-O AD the code segments and arguments of the primal
code are stored inside a memory structure called tape during the forward run of the
primal. In reverse mode the stored values on the tape are interpreted to get the re-
sultant adjoints derivatives, while in the S-T approach the code is parsed at compile
time and the actual derivative code is generated.

Prior to this paper [2], we have described a design framework for application of
the AD tool dco/fortran! (Derivative Code by Overloading in Fortran) to the
CFD solver GPDE (General Partial Differential Equation) solver [10]. GPDE is an
unstructured pressure-based steady Navier-Stokes solver with finite volume spatial
discretization for incompressible viscous flow computation [3]. In [2] , we discussed
the implementation of dco/fortran in the original CFD solver from scratch to
get the tangent and adjoint version of the primal CFD code. Moreover, we addressed
proper solution algorithms adapted to the code including an equidistant checkpoint-
ing scheme for the iterative solver and development of symbolically differentiated
of linear solver.

In this paper our emphasis is to extend the AD techniques for the improvement
of efficiency of the adjoint code. We replace the equidistant checkpointing scheme
by binomial checkpointing scheme using REVOLVE [6]. Also we combine the flex-
ibility and robustness of operator overloading with the efficiency of source trans-
formation by coupling dco/fortran and TAPENADE [8] for the most expensive
part of the adjoint code. In addition, we get the benefit of the reverse accumulation

1 developed at the institute Software and Tools for Computational Engineering at RWTH Aachen
University implementing AD by overloading in Fortran [12]

Improving Efficiency of a Discrete Adjoint CFD Code 3

technique [1] for the fixed point iterative construction in the primal code that carries
out the nonlinear iterations for solving the momentum and mass conservation equa-
tions. This implementation shows that the derivatives converge with a lower number
of iterations compared to the primal code, yielding a significant improvement in per-
formance. We verify the sensitivity results by finite differences for a medium size
vehicle climate duct test case that is presented in [13]. The performance compar-
ison results for different sizes of test cases prove the efficiency and robustness of
dco/fortran for calculating derivatives. It provides an easy to use implementa-
tion generating accurate and detailed sensitivities for shape optimization problems
in industrial CFD applications.

1.1 CFD Simulation

GPDE solver is an incompressible, steady-state flow solver with cell-centered stor-
age, face-based residual assembly; it works on unstructured meshes with collocated
variables and uses the SIMPLE [15] pressure correction algorithm in a pseudo time
stepping scheme towards a steady solution. It is written in Fortran 90-95 (7,000
lines) as a test-bed for developing adjoint Navier-Stokes fields and is specifically
designed to facilitate interfacing with optimization libraries. The case study that is
used for flow model simulation and sensitivity studies is the S-bend channel flow
case which is a simplified vehicle climatisation duct. Test case is carried out at
Reynold number 500 on the hexahedral mesh for three different sizes of 47000,
130,000, and 500,000 elements. The boundary condition is defined as uniform flow
at inlet. The simulation in GPDE is performed for 397 outer iterations of the pri-
mal code until we attain convergence with the tolerance of 1.0E — 08 for velocity
reduction. The geometry and velocity vector fields along the channel are shown in
Figure 1.

N
R
&

R
X

R
W

N
R
N

N
NS
N

N
<X
X
KR

o
W

N
N

N
S

N

N
R
N

N
N

X
W
N
p\
N\

7

Fig. 1 Geometry and velocity vector field of the S-bend channel flow

4 Zahrasadat Dastouri and Uwe Naumann

2 Development Of Incompressible Adjoint Solver Using
dco/fortran

The AD tool dco/fortran uses the operator overloading technique of the pro-
gramming language written in Fortran to calculate the derivatives of a software.
For given implementation of the primal function in Equation 1, the function F(!) :
R" x R" — R™ x R™ , defined as:

(y,y") = FU (x,xV), @)

where y(!) = VF(x) - x(1), is referred to as the tangent model of F. The directional
derivatives y(!) are computed in direction of x!!) € R” at the current point x € R”.
The function F(l) R” x R"™ — R" x R™, defined as

(y7X(l)):F(l)(X7y(l))a (3)

is referred to as the adjoint model of F. The adjoint model implementation yields
the objective y and the product X(;) = VF (x)" “¥(1) of its gradient at the current
point x € R". For the purpose of our CFD optimization, we applied both models
by using dco/fortran [2], however the adjoint model is preferred since a large
number of inputs (n) are mapped to a rather small amount of outputs (m = 1).

2.1 Black-box Adjoint Approach

For applying dco/fortran to the primal code, we need to have access to its
source. Moreover, we need to distinguish the design variables and objective function
in the CFD routine of the primal code. The primal run time with passive variables
is 3.32 min. This run time is obtained for convergence tolerance of 1.E — 8 yielding
397 iterations of our iterative solver for the S-Bend test case. By overloading data
types and function (activation) from passive type (real) to active type (tangent or
adjoint), the run time and memory usage increase. The primal run time with active
data type using dco/fortran is 5.92 min (without tape generation) which is fac-
tor 1.78 compared to passive type. It becomes more costly during taping process for
the iterative solver. By black-box approach we mean we get the sensitivities without
further exploiting the structure of the code or implementing the techniques to im-
prove the performance of the differentiated code. The objective function in GPDE
flow solver is defined as pressure loss to get the surface mesh sensitivities with
respect to corresponding independent design variables such as surface node coordi-
nates. These sensitivities are verified with finite differences in next section. However
the resulting memory usage of the black-box adjoint approach is not acceptable for
real world problems. Measures need to be taken to reduce the computational cost.

Improving Efficiency of a Discrete Adjoint CFD Code

Table 1 Gradient comparison of finite difference and adjoint-tangent codes using dco/fortran AD

tools

max gradient dir-1

max gradient dir-2

function value

primal -——— -—— 6.8847553685898450
tangent dco |0.000271417853082402|—0.00050458255494623|6.8847553685898450
adjoint dco |0.000271417853082383|—0.00050458255494610(6.8847553685898450

finite difference |0.000271420868003247|—0.00050458552891541|6.8847553685898450

2.2 Verification of Adjoint and Tangent Codes with Finite
Difference

To verify the results of adjoint code, the numerical first order sensitivity results
using dco/fortran for black-box approach are compared with finite difference
method along desired lines of geometry that determined in Figure 1.a. Due to the
memory restriction for the black-box adjoint code (100GB), we limit the number of
iterations to 10 time steps. In the finite difference method the derivatives of functions
are approximated by differences in the values of the solution between a given value
of the input variable and a small increment 4. The value of / can be determined by
smallest relative error between the derivatives of adjoint code and finite difference
as presented in Figure 2.

0.01
0.008 4
—
£
5 0.006 1
o
Z
50.004
. . . e
Fig. 2 Selecting step size in-
crement A for finite difference 0.002 1
comparison. Relative error is
the smallest value between 0
the derivatives of adjoint code le-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

and finite difference. sten size (h)

Table 1 shows for overloading approach, results of forward and reverse adjoint
sensitivities in each direction match perfectly up to machine precision that is ac-
curate up to tolerance 1.0E-7 for finite difference method. The pressure function
values is the same with primal output.

6 Zahrasadat Dastouri and Uwe Naumann

3 Efficient Adjoint CFD Code

Simplicity of implementation of the adjoint method by overloading tool comes with
a price in taping process. In a CFD solver, all inner iterations for linear solver
and outer iterations for calculating the velocity and pressure have to be taped. The
needed size of this tape grows dynamically proportional to the number of operations
in the calculation that leads to considerable memory consumption.

Our solution to this problem is to differentiate linear solver symbolically and to
employ a checkpointing scheme for the outer pseudo time stepping loop [2]. The
symbolic differentiation of linear solver is called from the tape during interpretation
process. This will dramatically decreases the memory consumption of the adjoint
solver and has a significant effect on execution speed up as it presented in Figure 4.

3.1 Checkpointing

The basic idea of checkpointing is to split the entire program into several sequen-
tial blocks of operations whose computational graphs of each fit into the available
memory [5]. In case of an iterative solver these blocks consist of a certain number
of iterations. These blocks are then taped and interpreted one at a time to produce
the resulting adjoint values of the complete computation.

Here we briefly overview the functionality and the performance cost of the
equidistant checkpointing scheme using dco/fortran and later we replace the
checkpointing algorithm by the binomial checkpointing strategy using REVOLVE.

3.1.1 Equidistant Checkpointing

Rather than storing and taping every variable and operation during the forward
run, checkpoints are stored at strategically chosen intervals g for n_chk (number
of checkpoint steps) where n_chk = n_iter/q and n_iter is the total number of itera-
tions. The maximum size of interval ¢ is limited to the available memory.

In equidistant checkpointing for the CFD solver, when the number of checkpoints
decreases, the memory usage of computer grows dramatically. Figure 3 shows the
growing memory requirement of the adjoint code using equidistant checkpointing
by increasing the size of the checkpoint interval. The huge memory consumption
limits the size of checkpoints interval to 30 iteration for S-bend test case which
results in total number of 13 checkpoints for 397 iteration.

3.1.2 Binomial Checkpointing-REVOLVE

The REVOLVE algorithm, introduced by Griewank et al[6], provides an optimal
checkpointing schedule for a prescribed number of n., checkpoint slots. It always

Improving Efficiency of a Discrete Adjoint CFD Code 7

40 100
351 run time-binomial —*— =
memory usage-binomial --- o
304 |: runtime-equidistant - =z
memory usage-equidistant - S
g 2
.5 25 g
i
g 20 4 5
5 s
E | IS
2 15 g
=
109 e 16
*
5
0 ‘ ‘ ‘ ‘
0 20 40 60 80 100

#checkpoints*100 / #time-steps

Fig. 3 Memory-run time trade-off for binomial-equidistant checkpointing using REVOLVE and
dco/fortran. Checkpoint are stored and restored from the tape.

tapes only one time step and minimizes the amount of extra forward steps needed
by setting checkpoints in a binomial fashion. This method yields logarithmic grows
in spatial complexity. It works through the following four stages:

e 0. Initialisation: memory space is reserved for g checkpoints, the first being the
initial state;

e 1. Multiple Forward: starting from the last checkpoint assigned, computation
is advanced to the penultimate state without taping intermediate values; if any
checkpoint slots are free, as many of them as possible are set to intermediate
states along the way (snapshots);

e 2. Combined Reverse: a forward sweep is performed with taping of intermediate
values from the penultimate state to the currently final state. On the same segment
a reverse step is then performed to compute the adjoints. This next-to-last state
now becomes the final state, and if it corresponds to the last checkpoint set then
it is freed up for subsequent reassignment;

e 3. Termination: stage 1 and 2 are repeated until all checkpoints are freed up, in
which case the procedure has reached regular termination.

Figure 3 displays the run time and memory usage for the adjoint calculation
as a function of the number of checkpoints for overall fixed number of time steps
(here 397). For this comparison, the memory that is required for store and restoring
variable values for the adjoint sweep is referred to the tape. The alternative approach
is to write and read the checkpoints values to and from the disk.

As it can be seen form the graph, in binomial checkpointing decreasing the num-
ber of snapshots (checkpoints) has a significant increase impact on run time. Unfor-
tunately, this procedure is always a trade-off between memory consumption and run
time. The memory consumption range between 7 to 15 GB that shows a noticable

8 Zahrasadat Dastouri and Uwe Naumann

reduction compared to equidistant checkpointing. If we checkpoint all the steps of
the iteration, binomial checkpointing and equidistant checkpointing are equivalent
in terms of performance. However binomial checkpointing is a preferred check-
pointing scheme for higher number of iteration since both memory consumption
and slowdown factor grow only like log(n_iter).

3.2 Hybrid Overloading- Source Transformation Approaches

GPDE is alternatively differentiated by the source transformation tool, TAPENADE[S].
This approach reduces the memory requirement and it is easier for the compiler to
perform compile time optimizations. However in terms of ease of implementation,
ability to handle arbitrary functions and less changing the original source code op-
erator overloading provides the differentiated code with a greater flexibility and
robustness in comparison with AD by source transformation. Therefore coupling
these two AD tools remains an efficient approach to decrease on one hand the de-
velopment time of differentiated code and in the other hand to reduce the memory
requirement of the adjoint code. The implementation steps for applying TAPENADE
AD tool via a dco/fortran tape is explained in Figure 5.

The idea is to extract the computationally most expensive part of the adjoint
code and differentiate it by TAPENADE. The adjoints generated by TAPENADE is
imported to dco tape. By using gprof for the GPDE adjoint code, the gradient
function is determined for taking most of the execution time. This function is re-
sponsible for calculating div term in momentum and pressure equations[2]. Instead
of recording the operations of such a function inside the forward run, the differen-
tiated procedure by TAPENADE is registered as the external function to the tape
and executed in the reverse run of the adjoint code. Figure 4 presents the improve-
ment in performance by coupling two AD approaches additionally to the symbolic
differentiating treatment of linear solver.

Fig. 4 Performance compar- 120 - kb‘
. . . . ackbox —
%SOI} fqr 10 iterations; There symbolically differentiated linear solver ----
is significant effect memory 2 1001 coupling dco/fortran with tapenade -
usage reduction and execution <)
speed up by coupling two AD E 801
approaches additionally to %
the symbolic differentiating 2 60
treatment of linear solver. §

2 40

[}

&

Q

g 204

0 0.5 1 15 2 25

run time (min)

Improving Efficiency of a Discrete Adjoint CFD Code

1- Forward:

-Extract data from tape (tp)
-Create checkpoint (cp)
-Register input: tp<—x,u
-y=grad(x,u,n__iter)

2- Forward:

-Register output: tp<1y

-Write to checkpoint: cp<—x,u,y
-Register function: tp<—grad_ ext

.................................)
passive tape
(.................................

dco/fortran tape dco/fortran tape

4- Reverse:

3- Reverse:

grad__ext:

-Read from checkpoint: x,u,y<—cp
-Extract adjoint from tape: y) <tp
- (xb,ub,y)=grad__b(x,u,n_iter,y.)

“X(1)=Xpy W)=y,
-Increment input adjoint
tp < XU

TAPENADE —|

Fig. 5 Calling TAPENADE from dco/fortran Tape

3.3 Reverse Accumulation for Fixed Point Loop

The fixed point iterative loop in CFD code carries out outer iterations for solving
the momentum and mass conservation equations. The memory requirement of the
reverse mode grows proportionally with the number of iterations. It is known that,
if the fixed point construction converges to the correct value, then the reverse gradi-
ent construction converges at the same rate[1]. Therefore, the reverse accumulation
technique for fixed point iterative construction in the CFD code is implemented. In-
stead of taping the whole evaluation sequence, the taping is started only for the last
iteration. The reverse accumulation for the fixed point is performed by repeated tape
interpretations of the last interval until the convergence of adjoint for state variables
is reached.

By applying this technique we reduce memory consumption of the adjoint code
independent of the number of iterations. The implementation of the method using
dco/fortran to compute the gradients of fixed point is illustrated in Algorithm 1
and Figure 6.

- tpy tps tps
forward mode l
dco/fortran tape = passive tape n

-
reverse mode n

Fig. 6 Reverse accumulation during the taping process

10 Zahrasadat Dastouri and Uwe Naumann

Figure 7 indicates for a converged primal to a fixed point, considerably fewer
number of iterations is needed for tape interpretation to converge the adjoints in
reverse accumulation. The variation of sensitivity results for different numbers of
tape interpretation iterations is compared with finite differences as the reference. It
shows the convergence of adjoints is achieved by around 150 iterations compared to
397 iterations in the primal solver.

0.0003 —— - :
50 iterations adjoint —
= 100 iterations adjoint ----
-2 0.00025 { 150 iterations adjoint -
5] finite difference -
=
S 0.0002 4
=
>
=
.= 0.00015
3=}
‘B
=
2 0.0001 4
3
Fig. 7 Adjoint Convergence & 5605 4
by increasing Reverse ac- 2
cumulation iterations when 0
primal converges after 397 0 5 10 5 20 25 30
iterations ton surface nodes

4 Numerical Results

Sensitivity analysis results are presented for the pressure loss objective function
with respect to surface boundary nodes of the S-bend in three dimensions for 47000
elements test case. The first order sensitivities show the direction of surface change
that leads to shape modification in the bend. Table 2 shows for the overloading
approach results of surface sensitivity from different techniques including reverse
accumulation, checkpointing, symbolically differentiated the linear solver and cou-
pling dco/fortran with TAPENADE match accurately. The surface sensitivity
results are verified with finite differences for the optimum perturbation 7 = 10e — 4
which measure reliability of the adjoint code. These results are illustrated and com-
pared along middle lines of the top and bottom surface geometry in Figures 9 and 10
and in a range of surface nodes in Figure 8.

4.1 Numerical Cost Comparison

The numerical sensitivity results for different performance improvement strategies
are compared in Table 2. These results are obtained for the whole iteration process

Improving Efficiency of a Discrete Adjoint CFD Code 11

Table 2 Gradient comparison of performance improvement strategies using dco/fortran and

TAPENADE
strategy? max sensitivity max sensitivity
top surface bottom surface
finite difference 0.000777160737447696|0.00101198156135652
binomial checkpointing [0.000777170733573492|0.00101195422914152
120 checkpoints
equidistant checkpointing® [0.000777170733573492(0.00101195422914152
397 checkpoints
reverse accumulation 0.000777171052073637{0.00101195433254612
reverse accumulation 0.000777171052073173|0.00101195433254530
+ hybrid dco/fortran-tapenade

“In all the methods linear solvers are symbolically differentiated
bEach step is checkpointed; g=1

.\\“\\n\\\\

S

SN
YO

S
R
SRS
N

8

SOy
SRR
S
=

25
5
2

s
s
%

000106

865006 0000523 000108
EEEmEEE

0 0.000528 0.00106 z X
-

Fig. 8 Sensitivity results map for pressure loss objective function with respect to surface nodes

for the steady solver up to the convergence point of the flow solver. The memory us-
age of REVOLVE and equidistant checkpointing is significant compared to other AD
strategies due to the growing memory usage of storing checkpoints for high num-
ber of iterations. To reduce storage requirement of taping, for this comparison the
checkpoints values are written to and read from disk that yield around 20% decrease
in memory consumption compared to storing checkpoints on the tape (Figure 3).
There is a significant memory usage reduction and execution speed up by applying
reverse accumulation. This performance slightly is improved by coupling two AD
approaches.

12

Fig. 9 Sensitivity analysis re-
sults comparison for pressure
loss objective function with
respect to top surface nodes

Fig. 10 Sensitivity analysis
results comparison for pres-
sure loss objective function
with respect to bottom surface
nodes

S-bend surface sensitivity-top line

S-bend surface sensitivity-bottom line

0.001

0.0008 1

0.0006 1

0.0004 1

0.0002 1

0.0002 1

0.0004 1

0.0006 1

0.0008 1

0.001

0.0012

Zahrasadat Dastouri and Uwe Naumann

finite difference ——
reverse accumulation ----
binomial checkpointing -
hybrid dco-tapenade -+
0 5 10 15 20 25 30
too surface nodes
bottom surtace nodes
0 5 10 15 20 25 30

| binomial checkpointing -

finite difference ——
reverse accumulation ----

hybrid dco-tapenade

Table 3 Performance comparison of performance improvement strategies using dco/fortran

and TAPENADE

strategy run time adjoint(min)/primal(min) i[memory (MB)
finite difference 47k x 3.32/3.32 =47k 143
binomial checkpointing 22.10/3.32=6.65 5917
120 checkpoints
equidistant checkpointing 19.25/3.32=5.79 9372
397 checkpoints
reverse accumulation 8.09/3.32=2.43 3607
reverse accumulation 6.76/3.32=2.03 3160
+ hybrid dco/fortran-tapenade

4.2 Performance Results for Different Size Test Cases

We present the results of comparison for test cases of different sizes in Figure 11.
The number of elements are increased to 130,000 and 500,000 for case 2 and case
3 respectively. Table 4 indicates the constant run time ratio of adjoint to primal

Improving Efficiency of a Discrete Adjoint CFD Code 13

code, however, the memory consumption increases. The memory cost can be re-
duced by distributing memory usage in a parallel adjoint code for big size industrial
test cases [16].

run time adjoint/primal|memory (MB)
case 1, 47K elements | 8.09/3.32=2.43 3607
case 2, 130K elements| 24.04/10.19 =2.36 10443
case 3, 500k elements | 122.24/61.18 = 1.99 40930

Table 4 Performance comparison of adjoint code for different sizes of S-Bend test case for 400
primal iterations using reverse accumulation

0.001 . L

© case 1: 47,000 elements —

= case 2: 130,000 elements ----

o,]

‘? 0.0008

2

=

= 0.0006

w)

=

[}

w

S 00004 1

k=

3

wa

2 00002 -

Q

<
Fig. 11 Variation of top sur- e 0 -
face sensitivities for different 0 5 10 15 20 25 30
size of test cases top surface nodes

5 Conclusion

Our approach in this paper is adjoint based shape optimization problem based on
application of the AD tool to the CFD solver to get accurate sensitivity results. We
apply efficient strategies to reduce numerical cost of the adjoint CFD code by imple-
mentation of checkpointing schemes and by symbolic differentiation of the iterative
linear solver. For the fixed-point iterative construction in the CFD code in steady
solver, we get the benefit of reverse accumulation techniques. Moreover, we improve
the performance by coupling O-O with S-T tools in a hybrid approach. This tech-
nique can be more effective by a proper extract and import of expensive part of the
CFD code via S-T tool. We demonstrate significant improvement in terms of mem-
ory consumption and run time of the resulting code for a sample CFD problem using
the dco/fortran AD tool. The numerical derivatives and performance analysis
show that dco/fortran is a reliable and efficient tool for calculating the sensi-

14 Zahrasadat Dastouri and Uwe Naumann

tivities for CFD code accurately. It provides the easy to use environment for shape
optimization in industrial applications. We extend application of dco/fortran to
generate the sensitivity algorithm for the commercial CFD solver ACE+ developed
by ESI group and relevant industrial test cases.

Algorithm 1 Implementation of reverse accumulation using dco/fortran

In:

-implementation of the adjoint flow function flow() for computing the objective and the input
adjoints (x(1),J) = flow()(flow-iter(u,p),x,J)) -
-current (surface) geometry: X

-initial flow state variables (velocity, pressure): W(i;r), P(inir)
Out:

-pressure loss objective: J

-surface sensitivity: Xy

Algorithm:

create tape: tp

geometry connectivity for flow field:

(uo,po) = g(x7u(inir)7p(init))

tp) +— get_tape_position

switch_tape_to_passive()

doi=1,n

ifi=n—1 then

switch_tape_to_active()

tpy +— get_tape_position

else
‘ (u;,pi) = flow_iter(u;_1,p;—1,n)

end

end do

tp3 +— get_tape_position

J=obj(u,,py)

J(]) —1

interpret_adjoint_to(t p3)

(Wa1ys Pa1y»J) = 0b 1) (@n, Pry (1))
(u271(1)vp271(1)) — (un(l)vpn(l)v‘,)
while i < n.and.& < € do

(W, 1) Py - (“;11(1)’1’;:11(1))
UG P(1) < Yy Pa)

! interpret_adjoint_from_to(7p3,7p2)
(u’“p"’uz—l(1)’pﬁ1—](1))
EflOWer.m)(llnfl,Pnﬂ,lli,(lypi,(]))
¢ = max(uiz—l(l) —uhp,) —P)

end

Uo(1),Po(1) < u&)?l’?])

! interpret_adjoint_from(/p(y))
X(1y = &(1) (X, Ug(1y, Po(1))

Improving Efficiency of a Discrete Adjoint CFD Code 15

Acknowledgements The presented research is supported by the project aboutFlow, funded by
the European Commission under grant no.FP7-PEOPLE-2012-ITN-317006.

References

1.

2.

(98}

10.

11.

12.

13.

14.

15.

16.

B. Christianson. Reverse accumulation and attractive fixed points. Optimization Methods and
Software, 3:311-326, 1994.

Z. Dastouri, J. Lotz, and U. Naumann. Development of a discrete adjoint cfd code using
algorithmic differentiation by operator overloading. In PM. Papadrakakis, M.G. Karlaftis,
and N.D. Lagaros, editors, OPT-i: An International Conference on Engineering and Applied
Sciences Optimization, Athens, 2014. National Technical University of Athens.

. J.H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics. Springer, 2002.
. M.B. Giles, M.C. Duta, J.D. Muller, and N.A. Pierce. Algorithm developments for discrete

adjoint methods. AIAA Journal, 41(2):198-205, Feb 2003.

. A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse

automatic differentiation. Optimization Methods and Software, 1:3554, 1992.

. A. Griewank and A. Walther. Algorithm 799: Revolve: an implementation of checkpoint-

ing for the reverse or adjoint mode of computational differentiation. ACM Transactions on
Mathematical Software, 26(1):19-45, March 2000.

. A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorith-

mic Differentiation. SIAM, Philadelphia, Jan 2000.

. L. Hascoét and V. Pascual. The Tapenade Automatic Differentiation tool: Principles, Model,

and Specification. ACM Transactions On Mathematical Software, 39(3), 2013.

. A. Jameson, L. Martinelli, and N.A. Pierce. Optimum aerodynamic design using the navier-

stokes equations. Theor. Comp. Fluid. Dyn., 10:213-237, 1998.

D. Jones, F. Christakopoulos, and J-D. Mller. Preparation and assembly of adjoint cfd codes.
Computers and Fluids, 46(1):282286, July 2011.

S. Kammerer, M. Paffrath, U. Wever, and A.R. Jung. Three-dimensional optimization of
turbomachinery bladings using sensitivity analysis. In Proceedings of ASME Turbo Expo
2003 Power for Land, Sea, and Air, Georgia, USA, 2003. ASME.

U. Naumann. The Art of Differentiating Computer Programs. An Introduction to Algorithmic
Differentiation. SIAM, Philadelphia, 2012.

C. Othmer and T. Grahs. Approaches to fluid dynamic optimization in the car development
process. In R. Schilling et. al., editor, Evolutionary Methods for Design, Optimisation and
Control with Applications to Industrial Problems, Munich, 2005. FLM.

C. Othmer, T. Kaminski, and R. Giering. Computation of topological sensitivities in fluid
dynamics: Cost function versatility. In P. Wesseling, E. Onate, and J. Periaux, editors, Eccomas
CFD, Delft, 2006. TU Delft.

S.V. Patankar and D.B. Spalding. A calculation procedure for heat, mass and momentum
transfer in three-dimensional parabolic flows. International Journal for Heat Mass Transfer,
15(10):1787-1806, 1972.

M. Schanen, U. Naumann, L. Hascoét, and J. Utke. Interpretative adjoints for numerical simu-
lation codes using mpi. In Proceedings of the 10th International Conference on Computational
Science, ICCS’2010, Amsterdam, 2010.

