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Abstract. Adjoint based calculation of sensitivities pertaining to a Computational Fluid
Dynamics (CFD) Solver has proven to be a vital tool in tackling large scale problems often
found in industrial applications. There are two basic approaches for applying Algorithmic Dif-
ferentiation (AD) to a CFD solver, namely, Operator Overloading and Source Transformation.
Unfortunately, in both cases, it is still necessary to invest a significant amount of manual cod-
ing in order to get to an application that performs acceptably in terms of memory consumption
and runtime. In this paper reverse mode of AD has been applied to an unstructured pressure-
based steady Navier-Stokes solver. We explore the feasibility of combining both kinds of AD
approaches to show where and how the advantages of each method can be exploited in order
to reach a suitable compromise between performance, simplicity and efficiency. Additionally,
we propose a methodology to automate the implementation of an adjoint software in order to
minimize work the developer must carry out to produce the desired derivative. We investigate
the effectiveness of this approach for relevant flow test cases.



1 INTRODUCTION

Algorithmic Differentiation (AD) [1, 2] employs the rules of differential calculus in an algo-
rithmic manner to determine accurate derivatives of a function defined by computer programs.
For a given implementation of the flow model F : Rn→Rm over a computational grid, the com-
puter program is developed to simulate the functional dependence of one or more objectives
y ∈ Rm on a potentially large number of input variables x ∈ Rn by simulation of:

F : Rn→ Rm, y = F(x) (1)

AD enables us to compute the corresponding derivatives ∂y
∂x in forward (forward mode) or

backward (reverse mode). For a given implementation of the primal function in Equation 1, the
function F(1) : Rn×Rm→ Rn×Rm , defined as

(y,x(1)) = F(1)(x,y(1))≡

(
F(x),

(
dy
dx

)T

· y(1)

)
(2)

is referred to as the adjoint model of F . The adjoint model implementation yields the objective
y and the product x(1) ≡ ∇F(x)T ·y(1) of its transposed jacobian at the current point x ∈ Rn.

There are two main methods for implementing AD: by source code transformation (S-T) or
by use of derived data types and operator overloading (O-O). In O-O AD the code segments
and arguments of the primal code are stored inside a memory structure called tape during the
forward run of the primal. In reverse mode the stored values on the tape are interpreted to get
the resulting adjoints , while the S-T approach parses the code at compile time and generates
the actual derivative code.

Prior to this paper [3], [4], we have discussed the implementation of the AD tool
dco/fortran1 (Derivative Code by Overloading in Fortran) to an unstructured pressure-
based steady Navier-Stokes solver. The solver is an incompressible flow solver with cell-
centered storage and face-based residual assembly. It works on unstructured meshes with col-
located variables and uses the SIMPLE [5] pressure correction algorithm in a pseudo time step-
ping scheme towards a steady solution. It is written in Fortran 90-95 (7,000 lines) as a test-bed
for developing adjoint Navier-Stokes fields [6]. The case study that is used for flow model
simulation and sensitivity studies is the S-bend channel flow case which is a simplified vehi-
cle climatisation duct that is presented in [7]. We have addressed proper solution algorithms
adapted to the code for the improvement of efficiency of the adjoint code by optimizing the
checkpointing scheme for the iterative solver and development of symbolically differentiated of
linear solver. In addition, we investigated the benefit of the reverse accumulation technique [8]
for the fixed point iterative construction in the primal code.

In this paper we combine the flexibility and robustness of operator overloading with the ef-
ficiency of source transformation by coupling dco/fortran and TAPENADE [9]. The latter
is used for the derivation of computationally expensive kernels. Our emphasis is to automate
the implementation of an adjoint software to decrease the development time of the differenti-
ated code. The overall design is presented in Sections 3 and 4 illustrating the transformation
procedure. Numerical results demonstrate the computational efficiency in terms of memory
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consumption and speed while preserving the flexibility of an O-O approach applied to a CFD
code.

2 REVIEW OF AD TOOLS

Algorithmic Differentiation is generally implemented using one of two strategies: source
code transformation or operator overloading. Here we present a brief review of both tools.

2.1 Operator overloading

Using AD by operator overloading to evaluate directional derivatives of an existing program
is comparatively easy. The main idea is to replace all relevant floating point data types within a
given program with corresponding enhanced types of the particular operator overloading tool.
The enhanced data types then keep track of any tangent- or adjoint-information of the specific
variables declared as floating point data types throughout the forward execution of the program.
This is accomplished by defining special operators for all intrinsic functions like +, -, sin(),
exp(), etc. , hence the name operator overloading. In case of a tangent-linear model derivative
information is acquired alongside the forward execution of the program. Using the adjoint
model this is not the case. When an intrinsic function is called during the forward execution
of the program, the required information to compute the adjoint information of all involved
active(i.e. tracked) variables does not yet exists. To show that, consider the assignment y =
x1 · x2. The adjoints for both inputs are x(1),1+ = y(1) · x2 and x(1),2+ = y(1) · x1 respectively.
Unfortunately, the value for y(1) is not yet available when the assignment is executed. Therefore,
the derivative information cannot be computed at that point in time. A two step approach to
solve this problem first stores all required information for every operation during the forward
execution of the program. The second step is running through the operations in reverse order
and calculating adjoint values of its inputs (x1, x2) from adjoint values of its outputs y(1) which
are now available. Storing of such information is usually realized by creating log entries on
a stack also referred to as tape. In case of dco/fortran, an entry in such a tape stores a
code for the type of operation, virtual addresses of operands x1 and x2 as well as floating point
values for its value y and adjoint y(1). This method automatically fulfils requirements of data-
flow and control-flow-reversal for an adjoint model without any extra effort by the tool or the
developer. Understandably, such an approach may require a very large amount of available
memory in order to store the entire tape for programs of even small to moderate complexity.
Its big advantage is its ease of implementation. There are different O-O AD tools for Fortran
programs such as ADF [10], ADOL-F [11], AUTO DERIV [12], etc.

2.2 Source transformation

AD by source transformation analyses the source code of a particular function and produces a
new source code which, when executed, calculates the original function value and its directional
derivative. The source code for a function is replaced by an automatically generated source code
that includes statements for calculating the derivatives interleaved with the original instructions.
The advantage is that the resulting code can be compiled into an efficient program due to com-
pile time optimizations having a greater effect. This is a valid approach for all programming
languages. The drawback is that this is an enormous transformation that usually cannot be done
by hand. Tools are needed to perform this transformation correctly and rapidly. For a tangent-
linear model, the transformation is straight forward because the derivative statements are in the
same order as the original statements. The adjoint model requires control flow reversal which



turns it into a challenging problem for S-T tool developers. Tapenade [9] engine is just one such
Automatic Differentiation tool that uses source transformation.Other examples of S-T tools that
provide automatic differentiation for Fortran programs are ADG [13], ADFOR [14], TAF [15],
OPENAD [16].
The relative advantages and dis- advantages of using the two different tools are summarized in
Table 1. The + sign indicates that the corresponding AD tool possesses the desired characteris-
tic.

AD tool O−O S−T
Ease of implementation + −
Changing the original source code + −
Memory consumption − +
Compile time optimizations − +
Compatibility of numerical gradients with the discrete PDE + +
Flexibility to handle arbitrary functions + −
Robustness + −

Table 1: Comparison operator overloading and source transformation AD tools

3 MIXED APPROACH: SOURCE TRANSFORMATION VIA OPERATOR OVERLOAD-
ING TOOL

We apply S-T via O-O tool using a feature of dco/fortran called External Function. This
interface provide adjoints of specific functions of a program to dco/fortran or TAPENADE.
It is typically used to provide analytically derived adjoints for computationally intense kernels.
Instead of recording the operations of such a kernel during the forward run a function pointer
is registered on tape. It points to a function capable of providing the adjoint information of
the kernel. Basically, if the adjoint model of a function f is known, this information can be
used during the interpretation in order to remove the necessity to record f during the forward
execution of the program. Depending on the complexity of f , this may have a drastic impact on
memory consumption. The following small example shows how this feature is used in order to
mix different approaches to adjoint computation.
Consider a function z = g(x, p) with x ∈Rn and z ∈Rm which at any point during its execution
calls y = f (x) (1). Let f(1), described in (2), be its known first order adjoint model and let P be
a program that computes the adjoint z(1) of g using dco/fortran. Including f(1) into P takes
two function implementations. First, a function f wrap(x) that hides the process described in
figure 1 denoted by X-Forward from the rest of P. Second, a function f ext which includes the
steps X-Reverse and calls the desired implementation of f(1) in between steps 3 and 4.

1-Forward The state of every non-constant variable which is needed to evaluate f has to be
saved. In addition, independent inputs for f are registered using the checkpointing fea-
tures of dco/fortran in order to have the correct variable addresses available later in
step 4.

2-Forward The output of f is saved and the implemented function f(1) is registered as the
external function that is later called by the interpretation process to evaluate adjoints x(1).
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Figure 1: External Function Concept

3-Reverse The stored data is loaded and the adjoint y(1) is read from tape.

4-Reverse The computed adjoint information has to be added back into the tape at their corre-
sponding positions. This is done by incrementing adjoint values of all registered variables
in reverse order.

4 AUTOMATION METHODOLOGY

The idea of the automation process described here assumes that there already exists an over-
loaded program derived by using dco/fortran. This section lists steps that need to be taken
in order to produce a combined (dco/fortran and TAPENADE) solution. The overview of
the method is presented in figure 2. In addition, a basic approach for automatic source code
generation of wrapper- and external functions is presented in 4.2.1 and 4.2.2 respectively. This
section uses some abbreviations for the different versions of a function:

f : The original overloaded function of the black-box dco/fortran version
f passive : The original function of the original program
f b : The adjoint function derived by TAPENADE
f wrap : The wrapper function corresponding to f
f ext : The function called by the interpreter to compute f(1)

Table 2: Function abbreviations

4.1 Kernel identification

The first and vital step is to choose the correct functions for extraction. Using a profiling tool
like gprof[17] or intel’s vtune[18] is more than sufficient to provide a list of computationally
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Figure 2: Automation of Source Code Generation

expensive functions. Another important information is how often those have been called during
one execution of the original program. The reason for collecting that particular information is
that using the external function feature involves storing/copying of data. This overhead may
negate any benefit when the computational effort per function call is too small. Thus, the
optimal candidates for extraction are functions with a significant self time and minimal number
of calls. In addition, it is beneficial if such a function is low in the hierarchical calling order so
as to avoid passing the entire program on to TAPENADE. Once such functions are identified they
can be passed on to TAPENADE in order to generate the corresponding overloaded versions.

4.2 Code generation

This sections describes how the development of wrapper- and external functions can be au-
tomated. The focus is on source code generation. Not considered is the automated integration
of newly created functions into a build system due to the variety in which such a system can be
realized.

4.2.1 Wrapper generation

A Wrapper function f wrap of an arbitrary function f has a fixed structure outlined in Algo-
rithm 1. Due to this fixed structure, it is possible to define the complete source code of f wrap
using only a few additional informations about the arguments of f. Once all required informa-
tion is collected a Python preprocessor could generate wrappers, register routines and replace
the code. The source code is determined knowing the following information about each variable
appearing in the argument list of the function f :

1. Input/Output/Parameter



2. Array Dimension(s)

3. Active/Basic/Derived Type

An active type is a specific derived type, namely dco_a1s_type. Knowing the input/output
status of an active variable defines whether it needs to be registered as such. It also determines
when its value has to be saved. Inputs and parameter values are saved before calling f whereas
outputs naturally have to be saved after their evaluation. Array dimensions determine the loop
structures encasing calls of functions like register input. All basic types are classified as pa-
rameters by default and only their current values need to be stored. A special case occurs when
processing derived types. This is due to the fact that a derived type may hold all kinds (in-
put/output/parameter) of variables inside. Consequently, this information needs to be collected
for all members of a derived type independently. In addition, a derived type may also have a
member which is a derived type itself. A program/script capable of processing arbitrary types
therefore has to have a part handling nested derived types. One way to realize such a program
is to split it in two parts. The first part collects all required information and fills a data structure
similar to Table 4 for each argument and each basic/active member variable of any derived types
appearing in the argument list of f. Then, for each step of Algorithm 1 it is checked for each
variable if code has to be added to the current section corresponding to the current variable.
This can be done by adding references of all var structures into three lists, inputs, outputs and
parameters, depending on their var.intent value.

Algorithm 1: wrapper function generation
Input :

- module dependency information of the overloaded adjoint function f(1)
- three lists of var structs: inputs, outputs, parameters

Output:
- source code of function f wrap

Algorithm:
generate function head
foreach var in inputs do

generate block register input
end
foreach var in inputs & parameters do

generate block checkpoint
end

generate call of original function y = f passive(x,p)

foreach var in outputs do
generate block checkpoint

end
foreach var in outputs do

generate block register output
end
generate closure statements



4.2.2 External function generation

Like the concept of the wrapper function, the external function also follows a specific se-
quence of tasks that need to be executed in a fixed order. The sequence is presented in algorithm
2. The information required to generate external function code is equal to that of a wrapper func-
tion when making one simplification. Every array is assumed to be allocatable, meaning that
all data structures are allocated when loading the checkpointed data in f ext. Not having this
assumption just means adding a allocatable flag to the Var structure and distinguishing the two
cases during code generation.

Algorithm 2: external function generation
Input :

- module dependency information of f passive

- three lists of var structs: inputs, outputs, parameters

Output:
- source code of function f ext

Algorithm:
generate function head
foreach var in inputs & parameters do

generate block read checkpoint
end
foreach var do

generate block allocate adjoint
end
foreach var in outputs do

generate block get input adjoint
end

generate call to fb

foreach var in inputs do
generate block increment adjoint

end
generate closure statements

4.3 Data collection

The collection of necessary information can be done in many ways. The method proposed
here consists of parsing the output of gfortran -fdump-parse-tree and the result of
the data flow analysis of TAPENADE. The latter is necessary for the identification of in- and
outputs of the function where as the former is used to fill data type and shape information. The
TAPENADE data flow analysis can be found on top of the source code of the derived function.
For example, let a function f_passive(x,y) implement y = ∑

n
i=1 x2

i . The corresponding
analysis of TAPENADE produces the following comments on top of the derived function f_b(

x,xb,y,yb):

! Differentiation of f_passive in reverse (adjoint) mode (with
options noISIZE):



State meaning of var(1) for f b meaning of var for f code blocks for f wrap
:zero output, var(1) := 0 parameter save in
:incr input, var(1) incremented input rgstr in, save in
:in-zero input, var(1) := 0 at end output rgstr out, save out
:in-out input & output input & output rgstr in, rgstr out, save in
:out output, var(1) := 0 at start input & output rgstr in, save in

Table 3: Intent states of active variables for f b

! gradient of useful results: x y
! with respect to varying inputs: x y
! RW status of diff variables: x:incr y:in-zero

The input/output status of an argument can be extracted from the RW status of diff variables
line. Arguments appearing here can have the following states listed in Table 3. Arguments of f
not appearing in this line are parameters and only need to be stored to ensure correct execution
of f_b. If any variable appearing in that line is a member of a derived type the corresponding
part denoting the RW status looks like

*(<var>.<member>):<state>.

A convenient solution to parse nested types is to construct each var.name like the string inside
the round brackets. This way, it is easy to produce the Fortran source code accessing said
member by just exchanging every ”.” with a ”%”.

5 NUMERICAL RESULTS

Numerical results are described for the S-bend test case in three dimensions for different
problem sizes ranging from 47k up to 500k cells. Sensitivity analysis results of the adjoint code
using operator overloading have been presented in earlier work [4] to calculate the sensitivity
of the pressure loss objective function with respect to surface boundary nodes of the S-bend.
These results have been obtained for the whole iteration process for the steady solver up to the
convergence point of the flow solver. Applying only operator overloading zo the flow solver
leads to significant memory usage presented in Figure 3 ( on tape ). The performance has
been improved by symbolically differentiating the linear solver. However, this is only applicable
to problems where the function to be differentiated is simple enough. Nevertheless, it is a very
good baseline for performance measurements.

Here we apply the alternative approach presented in this paper by applying source transfor-
mation for repetitive parts of the solver where the operator overloading interconnect the upper
level. Numerical results are verified and the cost is compared for most expensive repetitive part
of the CFD solver.

Var
name string
type string
rank integer
shape [dim1,dim2, . . . ,dimrank]
intent { ’in’,’out’, ’in-out’, ’parameter’}

Table 4: Members of Var struct



Table 5: Verification of results with finite difference

version error

dco/fortran 4.62263870374081E−008
dco/fortran +TAPENADE 4.62273583679148E−008

5.1 Verification

We verify the sensitivity results for adjoint solver with finite difference for all cells as pre-
sented in Equation 3. The value of step size increment is determined by smallest relative error
between the derivatives of adjoint code and finite difference, see [4]. The error comparison in
Table 5 show the accuracy of applying dco/fortran and TAPENADE tools for generating
derivatives.

err =
n

∑
i=1
|sen f d(i)− sen(i)version | (3)

5.2 Test environment

The test case is a S-bend ventilation duct for incompressible steady-state flow as presented
in [4] . The objective function computes the loss of pressure at the outlet of the channel and
the derived program adds computation of sensitivities of surface nodes with respect to the ob-
jective function (pressure loss at outlet). All programs are compiled and run on a machine with
hardware specifications shown in Table 6.

CPU Intel(R) Xeon(R) CPU E5-2630
Memory DDR3 @ 1600 Mhz

OS Debian GNU/Linux 8 (jessie)
Fortan Compiler GNU Fortran (Debian 4.9.2-10) 4.9.2

C++ Compiler gcc (Debian 4.9.2-10) 4.9.2
S-T tool TAPENADE 3.9

Table 6: Machine Specifications

5.3 Overloaded program variants

The process described in section 4 aims to combine the overloaded dco/fortran program
with kernels derived by TAPENADE. The kernel identification exposed the linear solver as, once
again, being the function doing most of the computation. Thus, it is chosen to be replaced using
the process presented in sections 4.2.1 and 4.2.2. Two program variants are compiled which
differ in one option for TAPENADE. The option is -nocheckpoint which splits the recording of
the variable and control flow stacks from the computation of the adjoint values into two separate
functions f_fwd and f_bwd [9]. This allows a more detailed performance comparison. As a
baseline for performance the symbolic differentiation of a linear solver is used and incorporated
using the external function feature producing a third program variant.
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Figure 3: Runtime and Memory for ventilation duct with 47k elements

5.4 Performance

Figure 3,4 and 5 show performance comparison results for the above mentioned test case
with 47k, 130k and 500k elements respectively. Runtime and peak memory requirement is
measured for computation of sensitivities with a fixed iteration count for the forward compu-
tation. The blue solid line is the default variant combining dco/fortran and TAPENADE.
Here, the function derived by TAPENADE reruns the forward evaluation of the linear solver dur-
ing the interpretation of the dco/fortran tape. The black, dashed line represents the second
combination where temporary data used by TAPENADE is acquired during the passive execu-
tion of the linear solver, i.e. in between steps 1-Forward and 2-Forward. This saves one linear
equation solve during the interpretation of each outer iteration but adds to the peak memory
requirement. The theoretical maximum memory requirement for this variant is

peak mem≈ tape+
n

∑
i=1

stacki (4)

where tape represents the space needed to store the entire dco/fortran tape and stacki
refers to the size of the temporary data of TAPENADE generated for calls of the linear solver
during the ith outer iteration. The default variant is between two and three times slower than
the symbolic variant for all three mesh configurations. As expected, the -nocheckpoint version(
black, dashed line ) is faster than the default variant but requires more space. In particular,
for smaller test cases(47k) the peak memory depends more on the iteration count of the linear
solver as shown in figure 3. Here, the number of iterations needed to meet a certain tolerance
of the linear solve about triples after roughly 250 outer iterations. That is the reason for the
sudden jump of the peak memory for the variant combining dco/fortran and TAPENADE
without checkpoints. A similiar but much more pronounced, jump can be observed for the O-O
only case. The configuration with 130k elements has a constant high number of iterations of
the linear solver and thus does not show a similar jump.
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6 CONCLUSIONS

The method described in this paper employs a source transformation via operator overloading
approach such that the resulting derivative code computes the sensitivity results of the given
problem in CFD solver. The key aspect of this method is a combination of source-to-source
transformation and operator overloading approaches. The numerical experiments are tested
for expensive repetitive part of the solver demonstrating significant memory reduction of the
resulting combined code compared to the overloaded adjoint version. In terms of memory
usage, these results are competitive with symbolic differentiation of a given function. It could
be used as a lower bound to decide whether developing a symbolic adjoint is viable. Moreover,
the time needed to computer the derivatives speed up by applying the combined approach which
is clearly superior for higher number of iteration. The overall design of a generic transformation
methodology is presented that is applicable for complicated computer programs.
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