
OPT-i
An International Conference on

Engineering and Applied Sciences Optimization
M. Papadrakakis, M.G. Karlaftis, N.D. Lagaros (eds.)

Kos Island, Greece, 4-6, June 2014

RIGID MOTION MESH MORPHER: A NOVEL APPROACH FOR MESH
DEFORMATION

George S. Eleftheriou1,2, Guillaume Pierrot1

1ESI-Group
99 rue des Solets, Parc d’Affaires SILIC, 94513 Rungis CEDEX, France

2National Technical University of Athens
P.O. Box 64069, 15710 Athens, Greece

e-mail: {george.eleftheriou,guillaume.pierrot}@esi-group.com

Keywords: rigid motion mesh morpher, as-rigid-as-possible, mesh morphing, mesh deforma-
tion, mesh anisotropy, mesh rotation, distortion, mesh-less, optimization-based, cfd, computa-
tional fluid dynamics, adjoint based optimization

Abstract. In adjoint based shape optimization problems, after the sensitivities have been com-
puted, there are two ways of dealing with the necessary changes to the mesh. The first one is
re-meshing based on the new shape, while the second one is adapting the existing mesh (by
moving the nodes) to fit the new shape. Re-meshing may be time consuming, as it is intro-
duced as a separate step inside the optimization loop, and tedious as it may require by-hand
manipulation. It also introduces inconsistencies in the process as the sensitivities have been
computed at isoconnectivity. Morphing also has its share of challenges, namely maintaining
the mesh quality (avoiding distorted and negative cells) while deforming it. Within this context,
various mesh morphing techniques have been developed. The Spring Analogy [1] is simple but
may suffer robustness issues. Laplacian smoothing [11] is suitable for translation but does not
account for rotation. The linear elasticity approach [3] does not account for mesh anisotropy
and is difficult to implement for general meshes because finite elements are used to solve the
equations. Finally, the Radial Basis Functions [7] are promising but computationally heavy as
the matrices involved are full, restricting the mesh size and complicating the implementation.
The Rigid Motion Mesh Morpher approach, proposed in the present study, aims at overcoming
the above-mentioned limitations, being more flexible and essentially mesh-less, since it does
not require any inertial quantities or cell connectivities related to the mesh. Firstly, the set of
boundary nodes (nodes defining the shape) of the mesh is identified. The prescribed motion of
these nodes (their velocities) is known. Then, all nodes are grouped into “stencils” which are
required to deform in an as-rigid-as-possible way. Hence, every stencil has a rotation velocity
and a translation velocity. Those, along with the velocities of all internal nodes, form the set
of unknowns. The as-close-to-rigid-as-possible motion is ensured by attempting to minimize a
metric representing the difference of the actual deformation from a perfectly rigid motion (a
translation plus a rotation). It will be shown that this quantity is related to the anisotropic
deformation energy. Next, the resulting system of equations is solved, having the prescribed
motion of the boundary nodes as boundary conditions.

George S. Eleftheriou, Guillaume Pierrot

1 INTRODUCTION

Let us consider the general shape optimization problem which, in gradient-based optimiza-
tion problems, can be described as

min
~d∈D

J(U, ~d) (1)

R(U, ~d) = 0 (2)

With

• J : the objective function

• U : the system state given by the natural problem R (Navier-Stokes equations) defined on
the domain Ω (if steady) or Ω× (0, T] (if unsteady)

• ~d ∈ D ⊂ RD, D ≥ 1 the design variables of the model. In our study this vector is
the nodes coordinates of the mesh Mh related to the physical domain Ω. Let us denote
by {Ni}Ni=1 the set of these nodes and by ΩB and ΩI respectively the boundary and the
interior of the domain Ω. II = {i/ Ni ∈ ΩI} and IB = {i/ Ni ∈ ΩB} are the sets of
node indices belonging respectively to ΩI and ΩB.

In the case of a gradient-based method, the −∇~dJ at each optimization iteration gives the
best descent direction. The computed gradient concerns the boundary nodes and the interior
nodes must somehow follow their movement. This can be achieved by trashing the exist-
ing mesh and creating a new one (re-meshing) based on the new shape. However it is time-
consuming and introduces inconsistencies, as the connectivities of the sequence of meshes pro-
duced differ from iteration to iteration. It also requires by-hand manipulation.

Another approach is to just make the internal nodes follow the movement of the boundary
nodes defining the shape, thereby deforming the existing mesh. The cell connectivities are kept
intact during the process and there is no new mesh to be built. This is called mesh morphing or
mesh smoothing. The problem of this approach is that the movement does not necessarily end
up well for the resulting mesh quality. It might be severly distorted, having negative cells.

Within this context, several mesh morphing methods have been developed. They are classi-
fied in four principal categories described in the subsections 1.1, 1.2, 1.3 and 1.4. We attempt
to quickly cite the principles of the techniques along with their weaknesses and merits. To
facilitate notation we can globally define as ~g = (~ui)i∈IB the displacement prescribed over ΩB.

1.1 Spring analogy

The spring analogy method [4, 2, 12, 1] is the most simple and classical approach, performing
quite well in a number of cases. Unfortunately, it doesn’t prevent cell collapse, and fails when
the local mesh motion exceeds significantly the local mesh size. Things become even worse,
when it has to deal with mesh anisotropy and mesh rotation. Its principal idea is the introduction
of a spring energy Es and the requirement for it to be minimum

Es =
∑
ij

1

Lij
(uj − ui)2 (3)

where Lij is the length of the spring.

George S. Eleftheriou, Guillaume Pierrot

1.2 Laplacian smoothing

Also known as “Laplacian coordinates” or “Laplacian based”, this approach is based on the
solution of a simple Laplace equation [10, 13, 11, 6] such that the displacement ~u of the nodes’
coordinates is the solution of the following problem:{

∇ · (µ(~x)∇~u) = 0 in Ω
~u = ~g on ΩB

(4)

with µ(~x) as the diffusion coefficient selected over Ω preserving the mesh anisotropy. The
computation of the displacement ~u related to the internal nodes (4) comes down to solving a
linear system whose dimension is equal to the number of nodes. This method seems efficient
when the mesh is subject to translation but suffers robustness issues in cases of more complex
transformations such as rotation.

1.3 Linear elasticity

In this method [3, 10, 5], in order to handle rotation, a linear elasticity model is introduced
to compute the displacements ~u such that:{

∇ · σ(~u) = 0 in Ω
~u = ~g on ΩB

(5)

σ being the Cauchy stress tensor

{
σ = λ tr(ε(~u)I + 2µε(~u)
ε(~u) = 1

2
(~uT + ~u)

(6)

with λ and µ being the Lamé constants. This method reaches its limits with large rotations or
mesh anisotropy as it doesn’t handle them intrinsically. Furthermore it is difficult to implement
for general polyhedral meshes because finite elements are used to solve the equations.

1.4 Radial Basis Function interpolation

This is an interpolation method [8, 7] searching for the displacement ~u(~x)

~u(~x) =
∑
l

γl φ(‖~x− ~xl‖) + h(~x) (7)

~u is the smooth interpolant which minimizes a certain norm. φ is the radial basis function
[7]. The constraint is to be exact over the boundary nodes:

~u(~xi) = ~v(~xi) i ∈ IB. (8)

The search for {γl}NB
l=1 satisfying (8), requires the solution of a linear system, the matrix of

which is unfortunately dense. This causes difficulties in cases of large NB.
In order to determine the coefficients {γl}#IBl=1 we have to solve a linear system in R(NB+1)×(NB+1)

where NB = #IB. Compared to the previously cited techniques, RBF morphing proves quite
robust with respect to both mesh rotation and mesh anisotropy. The problem is that the matrices
involved in the computations are always dense by design. Therefore, it’s a matter of choice
between a simple implementation at high computational cost, or a complex implementation at
the cost of solving the system almost as if it was sparse.

George S. Eleftheriou, Guillaume Pierrot

2 THE RIGID MOTION MESH MORPHER CONTRIBUTION

The method belongs to the family of optimization-based methods according to the classifica-
tion cited in [9]. This means that the nodes are not moved based on a heuristic algorithm such as
Laplacian smoothing, they are moved to minimize a given distortion metric. More specifically,
it tries to favour rigidity in the critical directions of imminent distortion.

There is an inherent contradiction starting from the very name of this method. Rigid Motion
Mesh Morpher. Why Rigid Motion? Afterall, how could something (a mesh in particular) be
kept rigid while being deformed (morphed)? The stated objective of this method and its main
philosophy is to deform a mesh, meanwhile keeping elements/parts of it as-rigid-as-possible.
Obviously they cannnot be kept entirely rigid, as this would defeat the purpose, however there
are ways to favour rigidity in certain critical directions when distortion of the element/part be-
comes imminent. These elements/parts are essentially groups of nodes called stencils. During
the mesh deformation, there is a kind of prevention mechanism that kicks-in whenever a partic-
ular stencil is about to distort or degenerate to a line segment. The stencils can be defined with
freedom as to the choice of nodes belonging to them. In the simple case, a 1:1 ratio between the
number of stencils and nodes could be considered as follows; a stencil may consist of one node,
plus all of its adjacent/neighbouring nodes sharing a cell. The main qualities of the method is
that it is mesh-less and handles intrinsically mesh anisotropy and mesh rotation.

Let us assume that an arbitrary rigid stencil s is in motion. Its motion comes as the combina-
tion of a translation, under velocity ~as and a rotation under velocity ~bs. In this case, the velocity
of a node j belonging to it, denoted as ~υsj would be

~υsj = ~as + ~bs ∧ (~xj − ~cs) (9)

where ~xj is the coordinate vector of the node and ~cs is the coordinate vector of the stencil’s
center of gravity. In the simple case, its coordinates can be computed as the mean value of the
coordinates of all nodes constituting the stencil (center of gravity of a point cloud). Moving
further, we no longer require that the stencil s be rigid; it is now allowed to deform. Therefore
the velocity of the node, ~υj would no longer be equal to ~υsj

~υj 6= ~as + ~bs ∧ (~xj − ~cs) = ~υsj (10)

Let ~esj be a vector representing this difference, between the actual deformation of the stencil
and its perfectly rigid motion. This vector will be a function of the stencil s and the nodes j
belonging to it:

~esj = ~υj − ~υsj = ~υj − ~as − ~bs ∧ (~xj − ~cs) (11)

Taking control over how this vector evolves/develops for every single stencil of the mesh
and trying to bound/minimize it, to the extent that this is possible, gives the first idea of how
the optimization problem will be posed. Therefore we enhance/enrich it with some weighting
coefficients

~esj =
√
wsµsj(~υj − ~as − ~bs ∧ (~xj − ~cs)) (12)

The square root is there just for convenience and the need for it will become clearer in section
5.3; ws is a scalar weight per stencil that may arbitrarily stress the importance of some stencils
as higher than others’. It can be objective when set to 1.0. To better explain the need for a
per stencil-node scalar weight µsj though, an example will be provided. Consider, for instance,

George S. Eleftheriou, Guillaume Pierrot

an anisotropic stencil, depicted in figure 1b, that is in a critical condition, meaning that if it is
allowed to further deform and squeeze, it risks degenerating to a line segment or distort.

This sounds like exactly the case where it would be useful to favour rigidity in the direction
of squeeze, freezing any further deformation. This is where µsj comes in handy serving as a
limiter to further distortion. For instance, it could be something like

µsj =

exp

(
−||~xj − ~cs||2

h2

)
||~xj − ~cs||2 + ε

(13)

h being the average size of the mesh and ε an arbitrary positive constant just to avoid division
by zero when the node under consideration coincides with the stencil’s center of gravity. The
coefficient and its underlying logic will be detailed in section 4.

The quantity ~esj
T · ~esj (scalar), henceforth denoted as ‖ ~esj‖2, will be shown (later) that relates

to the anisotropic deformation energy of the stencil.
Important theoretical results

1

2

3

4

5

6

7

8

9

Figure: Isotropic stencil ε : ε (elastic energy) as T = I

1

2

3

4

5

6

7

8

9

Figure: Squeezed/anisotropic stencil (we favour rigidity in the direction of
squeeze) T 6= I

µsj = exp(−||xj − cs||2/h2)/||xj − cs||2

George Eleftheriou (ESI Group) Progress report March 11, 2014 7 / 11

(a) Isotropic stencil

Important theoretical results

1

2

3

4

5

6

7

8

9

Figure: Isotropic stencil ε : ε (elastic energy) as T = I

1

2

3

4

5

6

7

8

9

Figure: Squeezed/anisotropic stencil (we favour rigidity in the direction of
squeeze) T 6= I

µsj = exp(−||xj − cs||2/h2)/||xj − cs||2

George Eleftheriou (ESI Group) Progress report March 11, 2014 7 / 11

(b) Squeezed/anisotropic stencil (we favour rigidity in the direction of squeeze)

Figure 1: Isotropic and anisotropic stencils

George S. Eleftheriou, Guillaume Pierrot

3 TOTAL DISTORTION ENERGY

At this point, a quantity called “total distortion energy” of the mesh will be introduced, to
serve as the objective function and at the same time the distortion metric, bound to be minimized
by the morphing algorithm. It is

E(~uj, ~as, ~bs) =
∑
s

∑
j∈s

‖ ~esj‖2 (14)

which is quadratic. Hence, to find the stationary points of the total distortion energy and
minimize it we require for all nodes j and stencils s

∂E

∂ ~υj
=
∂E

∂ ~as
=
∂E

∂~bs
= 0 (15)

4 ASYMPTOTIC DEVELOPMENT

We will see in this section how to relate the distortion metric of a stencil S:

Es =
∑
j∈S

µsj

{
~vj − ~αs − ~βs ∧ (~xj − ~cs)

}2

(16)

to the strain rate tensor:

ε̇ =

{
1

2

(
∂vα

∂xβ
+
∂vβ

∂xα

)}1≤β≤d

1≤α≤d
(17)

The first remark is that if
{

(~vi)i∈II ,
(
~αs, ~βs

)
s∈S

}
is solution of the optimisation problem

(15) then we surely have:

(
~αs, ~βs

)
= argmin

~as,~bs

∑
j∈S

µsj

{
~vj − ~as −~bs ∧ (~xj − ~cs)

}2

(18)

And subsequently:

(∑
j∈S

µsj

)
~αs =

∑
j∈S

µsj

{
~vj − ~βs ∧ (~xj − ~cs)

}
(19)

and:

Ys
~βs =

∑
j∈S

µsj (~xj − ~cs) ∧ (~vj − ~αs) (20)

with:

George S. Eleftheriou, Guillaume Pierrot

Ys =

(∑
j∈S

µsj {~eδ ∧ (~xj − ~cs)} · {~eγ ∧ (~xj − ~cs)}
)1≤γ≤d

1≤δ≤d

(21)

where (~eδ)1≤δ≤d denotes the canonical basis of Rd.
Up to the change of variable:

~αs ← ~αs + ~βs ∧ (~xs − ~cs) (22)

where:

xs =

∑
j∈S µsj ~xj∑
j∈S µsj

(23)

equation (19) and (20) become:

~αs =

∑
j∈S µsj ~vj∑
j∈S µsj

(24)

and:

Ỹs
~βs =

∑
j∈S

µsj (~xj − ~xs) ∧ (~vj − ~αs) (25)

with:

Ỹs =

(∑
j∈S

µsj {~eδ ∧ (~xj − ~xs)} · {~eγ ∧ (~xj − ~xs)}
)1≤γ≤d

1≤δ≤d

(26)

Let’s now assume that (~vj)j∈S is the interpolated of a smooth vector field ~v at nodes location:

(~vj)j∈S = (~v(~xj))j∈S

We have the following Taylor expansion:

~v(~xj) = ~v(~xs) +D~v (~xj − ~xs) +O(h2) ∀j ∈ S (27)

where h is a characteristic size of the stencil and:

D~v =

{
∂vα

∂xβ

}1≤β≤d

1≤α≤d
(28)

is the vector field differential at ~xs.

George S. Eleftheriou, Guillaume Pierrot

By the definition of ~xs (23) and (24) it comes then that:

~αs = ~v(~xs) +O(h2) (29)

And (25) becomes:

Ỹs
~βs =

∑
j∈S

µsj (~xj − ~xs) ∧ (D~v (~xj − ~xs)) +O(h3) (30)

Now, by introducing the classical splitting of D~v between its symmetric and anti-symmetric
part:

D~v = ε̇+ Ω̇ (31)

where:

ε̇ =

{
1

2

(
∂vα

∂xβ
− ∂vβ

∂xα

)}1≤β≤d

1≤α≤d
(32)

is the so-called rotation rate tensor, it comes:

Ỹs (~βs − ~ωs) = O(h3) (33)

where
~ωs =

1

2
~∇∧ ~v

is the so-called rotation rate vector.
Hence we have:

~βs = ~ωs +O(h) (34)

Using now (27),(29) and (34), and substituting back in equation (16) it comes:

Es =
∑
j∈S

µsj
{
~vj − ~v(~xs)− ~ωs ∧ (~xj − ~xs) +O(h2)

}2
=

∑
j∈S

µsj
{
ε̇s (~xj − ~xs) +O(h2)

}2
= (Xs ε̇s) : ε̇s +O(h3) (35)

where : denotes the Frobenius product of 2 matrices and:

Xs =

(∑
j∈S

µsj (~xj − ~xs)α (~xj − ~xs)β
)1≤β≤d

1≤α≤d

(36)

George S. Eleftheriou, Guillaume Pierrot

is the so-called stencil anisotropy tensor. We will now consider 2 practical cases. The first
one corresponds to a pure isotropic stencil (Fig. 1a).

With the weights µsj being chosen as indicated in (13), it is easy to see that:

~cs = ~xs = ~x5

where ~x5 denotes the central node of the stencil and:

Xs = µs Id

with:

µs =

{∑
j∈S

exp

(
−‖~xj − ~x5‖2

h2

)
(x1j − x15)2
||~xj − ~x5||2 + ε

}

=

{∑
j∈S

exp

(
−‖~xj − ~x5‖2

h2

)
(x2j − x25)2
||~xj − ~x5||2 + ε

}

Consequently, there is no favoured direction on the stencil distortion metric.
In case of a squeezed mesh, on the other hand (Fig. 1b), as it happens in boundary layers for

instance, things are quite different.
Indeed, we have again that

~cs = ~xs = ~x5

but the stencil anisotropy tensor is no longer scalar:

Xs = DIAG (µαs)1≤α≤d

with:

µαs =

{∑
j∈S

exp

(
−‖~xj − ~x5‖2

h2

) (
xαj − xα5

)2
||~xj − ~x5||2 + ε

}

Because this time the stencil dimension in the y direction hy is way smaller than in the x
direction hx and we have that:

c(Xs) =
hx
hy

where c(Xs) denotes the condition number of the matrix. Consequently it comes:

Es = hx
{
c(Xs) ε̇

2
yy + ε̇2xx

}
+O(h3)

and we see that we put more rigidity in the direction of squeezeness, which is is to be pre-
ferred as it is the direction of most imminent breakdown of the mesh. In this sense we can say
that the Rigid Motion Mesh Morpher algorithm handles naturally mesh anistropy.

George S. Eleftheriou, Guillaume Pierrot

5 BUILDING THE SYSTEM OF EQUATIONS

The quadratic minimization problem of the total distortion energy of the mesh, as stated in
(15), brings us to the following symmetric positive definite system[

Auu Au(a|b)
A(a|b)u A(a|b)(a|b)

]
·
[
u

(a|b)

]
=

[
Pu
P(a|b)

]
(37)

where the RHS consists of the boundary conditions, namely the prescribed nodes’ velocities.
Attempting to solve it using the Schur complement leads to two different cases of elimination:

Either u = f(a|b) or
(a|b) = g(u) (38)

So for instance

u = −A−1uu · Au(a|b) · (a|b) + A−1uu · Pu →
(−A(a|b)u · A−1uu · Au(a|b) + A(a|b)(a|b)) · (a|b) = −A(a|b) · A−1uu · Pu + P(a|b) (39)

Specializing the above analysis, for
∂E

∂ ~υj
= 0 we have:

∂E

∂ ~υj
=

∂

∂ ~υj

(∑
s

∑
j∈s

‖ ~esj‖2
)

=
∂

∂ ~υj

(∑
j∈s1

‖ ~es1j‖2 +
∑
j∈s2

‖ ~es2j‖2 + ...+
∑
j∈sN

‖ ~esN j‖2
)
(40)

So for a stencil:

∂

∂ ~υj

∑
j∈sk

‖ ~eskj‖2 =

∑
j∈sk

∂‖ ~eskj‖2
∂ ~υj

if j ∈ sk

0 if j /∈ sk
(41)

Considering the above, equation (40) becomes

∂E

∂ ~υj
=
∑
s3j

∂‖ ~esj‖2
∂ ~υj

=
∑
s3j

2 ~esj
T ∂ ~esj
∂ ~υj

= 0 (42)

But

∑
s3j

2 ~esj
T ∂ ~esj
∂ ~υj

= 0⇔
∑
s3j

~esj
T ∂ ~esj
∂ ~υj

= 0⇔
∑
s3j

[
∂ ~esj
∂ ~υj

]T
~esj = 0 (43)

Since ~esj is linear with respect to ~υj, ~as, ~bs, it could also be expressed as follows:

~esj =
∂ ~esj
∂ ~υj

~υj +
∂ ~esj
∂ ~as

~as +
∂ ~esj

∂~bs

~bs (44)

Hence

∂E

∂ ~υj
=
∑
s3j

[
∂ ~esj
∂ ~υj

]T (
∂ ~esj
∂ ~υj

~υj +
∂ ~esj
∂ ~as

~as +
∂ ~esj

∂~bs

~bs

)
= 0 (45)

George S. Eleftheriou, Guillaume Pierrot

We denote by

Nj =
∑
s3j

[
∂ ~esj
∂ ~υj

]T
∂ ~esj
∂ ~υj

(46)

Hjs =

[
∂ ~esj
∂ ~υj

]T [∂ ~esj
∂ ~as

∂ ~esj

∂~bs

]
(47)

the equation becomes

Nj ~υj = −
∑
s3j

Hjs

[
~as
~bs

]
(48)

For
∂E

∂ ~as
= 0 we have

∂E

∂ ~as
=

∂

∂ ~as

(∑
s

∑
j∈s

‖ ~esj‖2
)

=
∂

∂ ~as

(∑
j∈s1

‖ ~es1j‖2 +
∑
j∈s2

‖ ~es2j‖2 + ...+
∑
j∈sN

‖ ~esN j‖2
)
(49)

depending on the stencil

∂

∂ ~as

∑
j∈sk

‖ ~eskj‖2 =

∑
j∈sk

∂‖ ~eskj‖2
∂ ~as

if s = sk

0 if s 6= sk

(50)

equation (49) becomes

∂E

∂ ~as
=
∑
j∈s

∂‖ ~esj‖2
∂ ~as

(51)

∑
j∈s

∂‖ ~esj‖2
∂ ~as

=
∑
j∈s

[
∂ ~esj
∂ ~as

]T (
∂ ~esj
∂ ~υj

~υj +
∂ ~esj
∂ ~as

~as +
∂ ~esj

∂~bs

~bs

)
= 0⇒(∑

j∈s

[
∂ ~esj
∂ ~as

]T
∂ ~esj
∂ ~as

)
~as +

(∑
j∈s

[
∂ ~esj
∂ ~as

]T
∂ ~esj

∂~bs

)
~bs = −

∑
j∈s

[
∂ ~esj
∂ ~as

]T
∂ ~esj
∂ ~υj

~υj (52)

Similarly for
∂E

∂~bs
= 0 we end up with:(∑

j∈s

[
∂ ~esj

∂~bs

]T
∂ ~esj
∂ ~as

)
~as +

(∑
j∈s

[
∂ ~esj

∂~bs

]T
∂ ~esj

∂~bs

)
~bs = −

∑
j∈s

[
∂ ~esj

∂~bs

]T
∂ ~esj
∂ ~υj

~υj (53)

Combining equations (52) (53) into a more compact form:

Ms

[
~as
~bs

]
= −

∑
j∈s

[
∂ ~esj
∂ ~as

]T
∂ ~esj
∂ ~υj

[
∂ ~esj

∂~bs

]T
∂ ~esj
∂ ~υj

 ~υj = −
∑
j∈s

HT
js ~υj (54)

George S. Eleftheriou, Guillaume Pierrot

Where

Ms =

∑
j∈s

[
∂ ~esj
∂ ~as

]T
∂ ~esj
∂ ~as

∑
j∈s

[
∂ ~esj
∂ ~as

]T
∂ ~esj

∂~bs

∑
j∈s

[
∂ ~esj

∂~bs

]T
∂ ~esj
∂ ~as

∑
j∈s

[
∂ ~esj

∂~bs

]T
∂ ~esj

∂~bs

(55)

is a symmetric 6x6 matrix.

5.1 eliminating the node velocities ~υj
From (48) we have:

~υj = −
∑
s3j

N−1j Hjs

[
~as
~bs

]
(56)

and replacing ~υj in equation (54) (the two relations do not necessarily concern the same
stencil, that’s why an s′ is introduced),

Ms

[
~as
~bs

]
= −

∑
j∈s

HT
js

(
−
∑
s′3j

N−1j Hjs′

[
~as′
~bs′

])
⇒

Ms

[
~as
~bs

]
= −

∑
j∈s

(
−
∑
s′3j

HT
jsN−1j Hjs′

[
~as′
~bs′

])
⇒

Ms

[
~as
~bs

]
=
∑
s′

(∑
j∈s∩s′

HT
jsN−1j Hjs′

[
~as′
~bs′

])
⇒

Ms

[
~as
~bs

]
−
∑
s′

∑
j∈s∩s′

HT
jsN−1j Hjs′

ass′ s6=s′

[
~as′
~bs′

]
= 0 (57)

5.2 eliminating stencil velocities ~as, ~bs
Starting from equation (54) [

~as
~bs

]
= −

∑
j∈s

M−1s HT
js ~υj (58)

Changing the node index to i (instead of j so far), since it’s not the same nodes we are
referring to, equation (48) becomes

Ni~υi = −
∑
s3i

His

[
~as
~bs

]
(59)

George S. Eleftheriou, Guillaume Pierrot

Replacing
[
~as
~bs

]
as it is expressed in (58) in the above equation yields

Ni~υi −
∑
j

∑
s3{i,j}

HisM−1s HT
js

aij i 6=j

 ~υj = 0 (60)

5.3 Elaborating on some expressions

So far we referred generically to some expressions without getting into the details of com-
puting them or making them more explicit. Finally, this subsection is detailing this aspect. Let
us first consider the partial derivatives of ~esj :

∂ ~esj
∂ ~υj

=
√
wsµsj I(3×3) (61)

∂ ~esj
∂ ~as

= −√wsµsj I(3×3) (62)

∂ ~esj

∂~bs
=
√
wsµsj

 0 cs3 − xj3 xj2 − cs2
xj3 − cs3 0 cs1 − xj1
cs2 − xj2 xj1 − cs1 0

 (63)

It is worth noting that
∂ ~esj
∂ ~υj

,
∂ ~esj
∂ ~as

are diagonal and
∂ ~esj

∂~bs
is antisymmetric. Using a more

compact notation

∂ ~esj

∂(~as, ~bs)
=

[
∂ ~esj
∂ ~as

∂ ~esj

∂~bs

]

=
√
wsµsj

−1 0 0 0 cs3 − xj3 xj2 − cs2
0 −1 0 xj3 − cs3 0 cs1 − xj1
0 0 −1 cs2 − xj2 xj1 − cs1 0

 (64)

In light of the differentiation of ~esj the expressions of Nj and Hjs now become clearer

Hjs =

[
∂ ~esj
∂ ~υj

]T [∂ ~esj
∂ ~as

∂ ~esj

∂~bs

]
⇒

Hjs = wsµsj

−1 0 0 0 cs3 − xj3 xj2 − cs2
0 −1 0 xj3 − cs3 0 cs1 − xj1
0 0 −1 cs2 − xj2 xj1 − cs1 0

 (65)

Nj =
∑
s3j

[
∂ ~esj
∂ ~υj

]T
∂ ~esj
∂ ~υj
⇒

Nj =
∑
s3j

wsµsjI(3×3) (66)

George S. Eleftheriou, Guillaume Pierrot

We denote

M = diag(Ms) (67)
N = diag(Ni) (68)

H = (Hjs)
1 ≤ j ≤ nnodes

1 ≤ s ≤ nstencil
(69)

As an example, eliminating u as shown in (39), would mean

M = A(a|b)(a|b) (70)
H = Au(a|b) (71)
N = Auu (72)

Thus, the coefficient matrices indexed according to the two different cases of elimination
(38) are given:

Au = N−HM−1HT (73)

A(a|b) = M−HTN−1H (74)

6 CONCLUSIONS

• In the present article, a novel method, Rigid Motion Mesh Morpher has been introduced.
We provided indications, according to which, it handles intrinsically, at the same time,
the rotations and the mesh anisotropy of any mesh, since its design is mesh-less.

• It necessitates the solution of a sparse, symmetric positive definite (SPD) problem, pro-
portional to the size of the mesh.

• Ongoing work: we need to validate the approach on a variety of test cases and compare it
to existing approaches with the hope to demonstrate its superiority.

• It will be implemented as a part of an adjoint solver loop.

• Future work may include smoothing of the surface node velocity field as provided by the
adjoint solver or equivalently a CAD-free parametrization of the surface.

7 ACKNOWLEDGEMENTS

This work was funded by the EU through the FP7-PEOPLE-2012-ITN ”AboutFlow” Grant
agreement number:317006.

REFERENCES

[1] Carlo L. Botasso, David Detomi, and Roberto Serra. The Ball-Vertex Method: a New
Simple Spring Analogy Method for Unstructured Dynamic Meshes. Computer Methods
in Applied Mechanics and Engineering, 194:4244–4264, 2005.

[2] Christoph Degand and Charbel Farhat. A three-dimensional torsional spring analogy
method for unstructured dynamic meshes. Computers & structures, 80(3):305–316, 2002.

George S. Eleftheriou, Guillaume Pierrot

[3] Richard P. Dwight. Robust Mesh Deformation using the Linear Elasticity Equations. In
Computational Fluid Dynamics 2006, pages 401–406. Springer, 2009.

[4] Ch Farhat, C Degand, B Koobus, and M Lesoinne. Torsional springs for two-dimensional
dynamic unstructured fluid meshes. Computer methods in applied mechanics and engi-
neering, 163(1):231–245, 1998.

[5] David A Field. Laplacian smoothing and Delaunay triangulations. Communications in
applied numerical methods, 4(6):709–712, 1988.

[6] Peter Hansbo. Generalized laplacian smoothing of unstructured grids. Communications
in numerical methods in engineering, 11(5):455–464, 1995.

[7] Stefan Jakobsson and Olivier Amoignon. Mesh deformation using radial basis functions
for gradient-based aerodynamic shape optimization. Computers & Fluids, 36(6):1119–
1136, 2007.

[8] AM Morris, CB Allen, and TCS Rendall. Cfd-based optimization of aerofoils using radial
basis functions for domain element parameterization and mesh deformation. International
journal for numerical methods in fluids, 58(8):827–860, 2008.

[9] Nilanjan Mukherjee. A Hybrid, Variational 3D Smoother for Orphaned Shell Meshes. In
IMR, pages 379–390. Citeseer, 2002.

[10] Marco Andrea Pischedda. Mesh Morphing techniques based on continuum deformation
models. Master’s thesis, Politecnico di Milano, 2008.

[11] Z. Su, S. Wang, C. Yu, F. Liu, and X. Shi. A Novel Laplacian Based Method for Mesh
Deformation. Journal of Information and Computational Science, 7(4):877–883, 2010.

[12] Anh H Truong, Chad A Oldfield, and David W Zingg. Mesh movement for a
discrete-adjoint Newton-Krylov algorithm for aerodynamic optimization. AIAA journal,
46(7):1695–1704, 2008.

[13] Shaoting Zhang, Junzhou Huang, and Dimitris N Metaxas. Robust mesh editing using
Laplacian coordinates. Graphical Models, 73(1):10–19, 2011.

	INTRODUCTION
	Spring analogy
	Laplacian smoothing
	Linear elasticity
	Radial Basis Function interpolation

	THE RIGID MOTION MESH MORPHER CONTRIBUTION
	TOTAL DISTORTION ENERGY
	ASYMPTOTIC DEVELOPMENT
	BUILDING THE SYSTEM OF EQUATIONS
	eliminating the node velocities
	eliminating stencil velocities ,
	Elaborating on some expressions

	CONCLUSIONS
	ACKNOWLEDGEMENTS

