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Introduction

Checkpointing in the Store All context

m Select a piece of code "checkpointed piece”’ and not store its
intermediate values.

m Store only the values needed to reexecute the checkpointed
piece later (a “snapshot™)

m The checkpointed piece is executed again, storing the

intermediate values
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Introduction

Checkpointing serial adjoint programs

m The checkpointed piece of source code may correspond at run
time to several checkpointed intervals of execution
“checkpoints”.

m At run time, the nested structure of checkpoints form a tree.
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Introduction

Checkpointing adjoint MPI programs (point-to-point
communications)

- Communications restrict application of Checkpointing
- Popular approach: checkpoining only occurs at a level that
encompasses the level where communication takes place. In
particular:
m Both ends of each communication must be checkpointed in
the same way.
m Non blocking routines (e.g. isend) and their waits must be
checkpointed together.
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Introduction

Popular MPI checkpointing is not general

If only one end of a point-to-point communication is checkpointed,
the resulting code fails.

mpi_recv(b) mpi_send(x)
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Introduction

Another problem: nonblocking communications

If the non blocking routine doesn’t belong to the same checkpoint
as its wait, the resulting code fails

mpi_isend(a,r) mpi_wait(r) P ) mpi_isend(a,r) mpi_wait(r)
Process: — melemie. rocess:
. . —
mpi_walt(r) mpi_isend(a,r)
Af— S
P E— ——

= Need to lift this restriction
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Checkpointing Adjoint MPI Programs: “Memo technique”

Checkpointing Adjoint MP| Programs: Memo technique

m mpi_recv log their received values. Same thing for the
mpi_wait of a mpi_irecv

m Repeated mpi_send are disabled. Same thing for mpi_isend,
mpi_irecv and mpi_wait of a mpi_isend

m Repeated mpi_recv are replaced by a read of the logged value.
Same thing for the mpi_wait of mpi_irecv

mpi_recv(b) mpi_send(x)
Process1: I= > Processl: = —— >
mpi_isend(a) mpi_recviy); log(y)
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Checkpointing Adjoint MPI Programs: “Memo technique”

What if nested checkpoints?

Process2 :

Processl: .-

recv(b,0)-> mpi_recv(b);log(b)
o a
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recv(b,1l)-> retrieve(b)
Coep @ e
A
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Checkpointing Adjoint MPI Programs: “Memo technique”

Discussion on the memo technique

The memo technique:
m Changes the behavior of communication calls

m Requires adaptation of the checkpoint mechanism: the logged
values (conceptually a part of the snapshot) do not follow the
stack order.

m Has no specific conditions in the choice of the checkpoints.

m Lets each process be checkpointed independently from other
process.
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Checkpointing Adjoint MPI Programs: “Memo technique”

Memory issues

m Logging values uses memory
m Messages are often larges

m Non-stack structure prevents memory reuse

= The memo technique is general, but memory-costly
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Re-sending

Re-sending

Re-sending
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Re-sending

Re-sending

m Repeat communications whenever possible = this reduces
logging size.

m The 2 ends of a repeated communication must be at the same
checkpointing level.

recy(pLOAZ? mpi_recv(b)
Processl: .®

recv(b,1)-> mpi_recv(b);log(b)

A

recv(b,2)-> retrieve(b)
Ol

R

send(a,ﬁ‘)\‘—? mpi_send(a)
Process2:"._¢g

send(a,1)-> mpi_send(a)
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Re-sending

When is resending possible?

m If the "re-send” communication is non-blocking, its wait must
belong to the same checkpoint level.

m Defining checkpoints as “paired” the checkpoints that contain
the 2 ends of a “resend” communication, one checkpoint in a
process cannot be paired with two checkpoints in another.

Processl1: B
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Future work

Future work

Future work
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Future work

Future work

m Proof of correction
m Implementation in Tapenade and AMPI.

m Experiments on real codes
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Future work
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