

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Contents

1 Introduction

2 Checkpointing Adjoint MPI Programs: “Memo technique”

3 Re-sending

4 Future work

2/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Checkpointing in the Store All context

Select a piece of code ”checkpointed piece”’ and not store its
intermediate values.

Store only the values needed to reexecute the checkpointed
piece later (a “snapshot”)

The checkpointed piece is executed again, storing the
intermediate values

U⃗
C⃗
D⃗
D
C
U

U
C
D

C
D⃗
D

 Program P Adjoint of P Adjoint after checkpointing C At run time

C D⃗

DC⃗

C

+snp

−snp

C⃗
C
U

−snp

U⃗

U⃗

U

⃗

⃗
⃗
⃗

⃗
⃗

⃗

⃗
⃗

+snp

3/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Checkpointing serial adjoint programs

The checkpointed piece of source code may correspond at run
time to several checkpointed intervals of execution
“checkpoints”.

At run time, the nested structure of checkpoints form a tree.

depth= 1

depth= 2

depth= 0

4/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Checkpointing adjoint MPI programs (point-to-point
communications)

- Communications restrict application of Checkpointing
- Popular approach: checkpoining only occurs at a level that
encompasses the level where communication takes place. In
particular:

Both ends of each communication must be checkpointed in
the same way.

Non blocking routines (e.g. isend) and their waits must be
checkpointed together.

5/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Popular MPI checkpointing is not general

If only one end of a point-to-point communication is checkpointed,
the resulting code fails.

mpi_send(a)

Process1:

Process2:

mpi_recv(b)

mpi_send(a)
?

mpi_recv(y)

Process1:

Process2:

mpi_send(x)

?
mpi_recv(y)

6/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Another problem: nonblocking communications

If the non blocking routine doesn’t belong to the same checkpoint
as its wait, the resulting code fails

mpi_wait(r)
Process:

mpi_wait(r)

mpi_wait(r)
Process:

mpi_isend(a,r)mpi_isend(a,r)

mpi_isend(a,r)

⇒ Need to lift this restriction

7/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Checkpointing Adjoint MPI Programs: “Memo technique”

1 Introduction

2 Checkpointing Adjoint MPI Programs: “Memo technique”

3 Re-sending

4 Future work

8/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Checkpointing Adjoint MPI Programs: Memo technique

mpi recv log their received values. Same thing for the
mpi wait of a mpi irecv
Repeated mpi send are disabled. Same thing for mpi isend,
mpi irecv and mpi wait of a mpi isend
Repeated mpi recv are replaced by a read of the logged value.
Same thing for the mpi wait of mpi irecv

mpi_send(a)

Process1:

Process2:

mpi_recv(b)

no_op

mpi_recv(y); log(y)

Process1:

Process2:

mpi_send(x)

retrieve(y)

9/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

What if nested checkpoints?

send(a,0)> mpi_send(a)

Process1:

Process2 :

recv(b,0)> mpi_recv(b);log(b)

recv(b,1)> retrieve(b)

recv(b,2)> retrieve(b)

send(a,1)> no_op

10/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Discussion on the memo technique

The memo technique:

Changes the behavior of communication calls

Requires adaptation of the checkpoint mechanism: the logged
values (conceptually a part of the snapshot) do not follow the
stack order.

Has no specific conditions in the choice of the checkpoints.

Lets each process be checkpointed independently from other
process.

11/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Memory issues

Logging values uses memory

Messages are often larges

Non-stack structure prevents memory reuse

⇒ The memo technique is general, but memory-costly

12/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Re-sending

1 Introduction

2 Checkpointing Adjoint MPI Programs: “Memo technique”

3 Re-sending

4 Future work

13/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Re-sending

Repeat communications whenever possible ⇒ this reduces
logging size.
The 2 ends of a repeated communication must be at the same
checkpointing level.

send(a,0)> mpi_send(a)

Process1:

Process2 :

recv(b,0)> mpi_recv(b)

recv(b,1)> mpi_recv(b);log(b)

recv(b,2)> retrieve(b)

send(a,1)> mpi_send(a)

14/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

When is resending possible?

If the “re-send” communication is non-blocking, its wait must
belong to the same checkpoint level.
Defining checkpoints as “paired” the checkpoints that contain
the 2 ends of a “resend” communication, one checkpoint in a
process cannot be paired with two checkpoints in another.

mpi_send(a)

Process1:

Process2 :

mpi_recv(b)

mpi_send(a)

mpi_recv(y)

mpi_send(x)

mpi_send(x)

mpi_recv(y)mpi_recv(b)

?

?

??

15/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Future work

1 Introduction

2 Checkpointing Adjoint MPI Programs: “Memo technique”

3 Re-sending

4 Future work

16/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Future work

Proof of correction

Implementation in Tapenade and AMPI.

Experiments on real codes

17/18

Introduction Checkpointing Adjoint MPI Programs: “Memo technique” Re-sending Future work

Acknowledgements

This work has been conducted within the About Flow project on
“Adjoint-based optimisation of industrial and unsteady flows”.

http://aboutflow.sems.qmul.ac.uk

About Flow has received funding
from the European Union’s Seventh
Framework Programme for research,
technological development and
demonstration under Grant
Agreement No. 317006.

18/18

	Introduction
	Checkpointing Adjoint MPI Programs: ``Memo technique''
	Re-sending
	Future work

