18th European Workshop on AD

Checkpointing on Adjoint MPI Programs

INRIA Sophia-Antipolis, France

Supervised by:

Laurent Hascoét

Crzzicr — ABOUTflow =




Contents

Introduction
Checkpointing Adjoint MPI Programs: “Memo technique”
Re-sending

Future work

Crzzica — ABOUTflow = == 2/18



Introduction

Checkpointing in the Store All context

m Select a piece of code "checkpointed piece”’ and not store its
intermediate values.

m Store only the values needed to reexecute the checkpointed
piece later (a “snapshot™)

m The checkpointed piece is executed again, storing the

intermediate values

Program P Adjoint of P Adjoint after checkpointing C At run time

U
+snp
— ¢ U +snp C D
U —> g —> D - e
U= ¢ —~p—~ wme -5
D D —snp O_b"l
D ¢ = ¢
¢ ¢ v
U U

Crzzica — ABOUTflow = == 318



Introduction

Checkpointing serial adjoint programs

m The checkpointed piece of source code may correspond at run
time to several checkpointed intervals of execution
“checkpoints”.

m At run time, the nested structure of checkpoints form a tree.

Crzzica — ABOUTflow = == 418



Introduction

Checkpointing adjoint MPI programs (point-to-point
communications)

- Communications restrict application of Checkpointing
- Popular approach: checkpoining only occurs at a level that
encompasses the level where communication takes place. In
particular:
m Both ends of each communication must be checkpointed in
the same way.
m Non blocking routines (e.g. isend) and their waits must be
checkpointed together.

Crzzica — ABOUTflow = == 5/18



Introduction

Popular MPI checkpointing is not general

If only one end of a point-to-point communication is checkpointed,
the resulting code fails.

mpi_recv(b) mpi_send(x)
Processl: Lo » Processl: — »-
mpi_sénd (a) mpi_recv(y)
Process2: @ < > P m— Process2: .
mpi_seng (a) A mpi_recy (y) e
A—— f—

Crzzica — ABOUTflow = == 6/18



Introduction

Another problem: nonblocking communications

If the non blocking routine doesn’t belong to the same checkpoint
as its wait, the resulting code fails

mpi_isend(a,r) mpi_wait(r) P ) mpi_isend(a,r) mpi_wait(r)
Process: — melemie. rocess:
. . —
mpi_walt(r) mpi_isend(a,r)
Af— S
P E— ——

= Need to lift this restriction

Crzzica — ABOUTflow = = =

~
<)



Checkpointing Adjoint MPI Programs: “Memo technique”

Checkpointing Adjoint MPI Programs: “Memo technique”

Checkpointing Adjoint MPI Programs: “Memo technique”

Crzzica — ABOUTflow = == 8/18



Checkpointing Adjoint MPI Programs: “Memo technique”

Checkpointing Adjoint MP| Programs: Memo technique

m mpi_recv log their received values. Same thing for the
mpi_wait of a mpi_irecv

m Repeated mpi_send are disabled. Same thing for mpi_isend,
mpi_irecv and mpi_wait of a mpi_isend

m Repeated mpi_recv are replaced by a read of the logged value.
Same thing for the mpi_wait of mpi_irecv

mpi_recv(b) mpi_send(x)
Process1: I= > Processl: = —— >
mpi_isend(a) mpi_recviy); log(y)
Process2: @ <2 b Process2: @ <2
no_op A retrieve(y) <
OL» O_'—>
-t <

Crzzica — ABOUTflow = == o/18



Checkpointing Adjoint MPI Programs: “Memo technique”

What if nested checkpoints?

Process2 :

Processl: .-

recv(b,0)-> mpi_recv(b);log(b)
o a

—
-—
recv(b,1l)-> retrieve(b)
Coep @ e
A
recv(b,2)-> retrieve(b)
Ol

—
~f—

send(a,dykg mpi_send(a)
[

-
send(a,1l)-> no op
O A —

-
-

ABOUTflow = = =

10/18



Checkpointing Adjoint MPI Programs: “Memo technique”

Discussion on the memo technique

The memo technique:
m Changes the behavior of communication calls

m Requires adaptation of the checkpoint mechanism: the logged
values (conceptually a part of the snapshot) do not follow the
stack order.

m Has no specific conditions in the choice of the checkpoints.

m Lets each process be checkpointed independently from other
process.

Crzzica — ABOUTflow = == 1/18



Checkpointing Adjoint MPI Programs: “Memo technique”

Memory issues

m Logging values uses memory
m Messages are often larges

m Non-stack structure prevents memory reuse

= The memo technique is general, but memory-costly

Crzzica — ABOUTflow = == 12/18



Re-sending

Re-sending

Re-sending

Crzzica — ABOUTflow = == 13/18



Re-sending

Re-sending

m Repeat communications whenever possible = this reduces
logging size.

m The 2 ends of a repeated communication must be at the same
checkpointing level.

recy(pLOAZ? mpi_recv(b)
Processl: .®

recv(b,1)-> mpi_recv(b);log(b)

A

recv(b,2)-> retrieve(b)
Ol

R

send(a,ﬁ‘)\‘—? mpi_send(a)
Process2:"._¢g

send(a,1)-> mpi_send(a)

P —

Crzzica — ABOUTflow = == 14/18



Re-sending

When is resending possible?

m If the "re-send” communication is non-blocking, its wait must
belong to the same checkpoint level.

m Defining checkpoints as “paired” the checkpoints that contain
the 2 ends of a “resend” communication, one checkpoint in a
process cannot be paired with two checkpoints in another.

Processl1: B
- mpi_recv(b) mpi_recv(y ‘
2 2

o .’ = =
—

Ny mpi_send(a) mpi_send(x) o
Process2: . @ O pey @ T2 gy
mpi_seng (x)

i d
mpi_send(a) —

~—

Crzzica — ABOUTflow = == 15/18



Future work

Future work

Future work

Crzzica — ABOUTflow = == 16/18



Future work

Future work

m Proof of correction
m Implementation in Tapenade and AMPI.

m Experiments on real codes

Crzzica — ABOUTflow = == 17/18



Future work

Acknowledgements

This work has been conducted within the About Flow project on
“Adjoint-based optimisation of industrial and unsteady flows".

http://aboutflow.sems.qmul.ac.uk

About Flow has received funding
from the European Union's Seventh
Framework Programme for research,
technological development and
demonstration under Grant
Agreement No. 317006.

RollsRoyce' @/ ‘ Y Queen Vary T o
.o — RWTH B University of
werengys. Crsia— TRPGHEY L Athens

-

Clrzzica — ABOUTflow = == 18/18




	Introduction
	Checkpointing Adjoint MPI Programs: ``Memo technique''
	Re-sending
	Future work

