
ADJOINTS OF FIXED-POINT ITERATIONS
 Ala Taftaf

INRIA, SOPHIA
ANTIPOLIS, FRANCE

14th European Workshop on AD

Contexte général Adjoint Algorithms

Adjoint (AD)

Algorithm

Gradient

Adjoint
Algorithm

• Adjoint algorithms : the most efficient way to obtain
gradient of a numerical simulation

• Computing the gradients has a cost (time, memory)

• One way around : take advantage of the structures of
 the given program (parallel loops, fixed point methods,..)

Parameters

Contexte général

2

Fixed Point Iterations

• Many implicit functions 𝑭 𝒛, 𝒙 = 𝟎 are computed
with convergent iterations:

Initial guess 𝒛𝟎 𝒙

Iterate 𝒛𝒌+𝟏(𝒙) = 𝝋 𝒛𝒌(𝒙) , 𝒙

To fixed point 𝒛∗(𝒙) = 𝝋 𝒛∗(𝒙) , 𝒙

• Followed by an objective function 𝒚 = 𝒇 𝒛∗, 𝒙

Contexte général Adjoint of Fixed Point Iterations

• First iterations of a fixed-point search :
 𝒛𝟎 𝒙
 𝒛𝟏 𝒙 = 𝝋 𝒛𝟎(𝒙) , 𝒙
 …..
 operate on a meaningless state vector =>No adjoint
 needed
• Adjoin only the (few) last iterations
• Save trajectory storage

At least two authors have studied mathematically fixed
point iterations with the goal of defining an efficient
adjoint : Christianson and Griewank

𝒛𝒌+𝟏 = 𝝋 𝒛𝒌(𝒙) , 𝒙 𝒛∗

𝒘 ∗

Contexte général Christianson’s strategy (BC)

 𝒚 = 𝒇 𝒛∗, 𝒙

 𝒚 = 𝟏
 𝒛 = 𝒚 . 𝒇𝒛(𝒛∗, 𝒙)
 𝒙 = 𝒚 . 𝒇𝒙(𝒛∗, 𝒙)

 𝒘 𝒌+𝟏= 𝒘 𝒌. 𝝋𝒛 𝒛∗, 𝒙 + 𝒛

Forward Sweep

 Backward Sweep

 𝒙 = 𝒘 ∗. 𝝋𝒙 𝒛∗, 𝒙 + 𝒙

𝒘 𝟎= 𝒛

Contexte général Griewank’s strategy (AG) : Piggyback

 𝒚 = 𝒇 𝒛∗, 𝒙

 𝒛𝒌+𝟏 = 𝒛𝒌- 𝑷𝒌. 𝒘𝒌

𝒛 𝒌 = 𝒘 𝒌. 𝑭𝒛(𝒛𝒌, 𝒙) + 𝒚 .𝒇𝒛(𝒛𝒌, 𝒙)

 𝒘𝒌 = 𝑭(𝒛𝒌, 𝒙)

𝒘 𝒌+𝟏 = 𝒘 𝒌- 𝒛 𝒌. 𝑷𝒌

𝒙 ∗ = 𝒘 ∗. 𝑭𝒙(𝒛∗, 𝒙) + 𝒚 .𝒇𝒙(𝒛∗, 𝒙)

 𝒘𝒌 = 𝑭(𝒛𝒌, 𝒙)

 𝒛𝒌+𝟏 = 𝒛𝒌- 𝑷𝒌. 𝒘𝒌

𝒛∗, 𝒘 ∗ 𝒛∗

Original Program Adjoint Program

Contexte général AG and BC: Similarities

• Both manage to avoid naïve inversion of the original

sequence of iterations => Save trajectory storage

• Stopping criterion of the adjoint fixed point is distinct
from the original test

• Convergence rate is similar for the derivative
computation and the original computation

AG and BC: Differences

AG BC

Shape of
iteration step

Additional
Assumptions
𝒛𝒌+𝟏 = 𝒛𝒌- 𝑷𝒌. 𝒘𝒌

 General
𝒛𝒌+𝟏 = 𝝋 𝒛𝒌, 𝒙

Start of
adjoining

From the
Beginning
(more iterations)

After a total
convergence

Sequel of F.P.
loop

Adjoin repeatedly

Adjoin once

Mostly for implementation reasons, we want :

Reasons for our choice

• No assumption for iteration shape

• no multiple differentiation of the sequel

• differentiate only the (few) last iterations

• to preserve the 2 sweeps structure of the adjoint
code

𝒙 𝒛

Identifying the F.P. structure

In the computation of the adjoint (𝒘 𝒌+𝟏= 𝒘 𝒌. 𝝋𝒛 𝒛∗, 𝒙 + 𝒛)
we need to determine (𝝋, 𝒛, 𝒙) in the original program =>
Adding new directives

 $AD Begin FP loop

 REPEAT UNTIL (𝒛 stationary)
 $AD Begin FP iteration
 𝐳 = 𝝋 𝒛, 𝒙
 $AD END FP iteration
 END REPEAT

 $AD END FP loop
 𝒚 = 𝒇(𝒛, 𝒙)

Contexte général

2

Discussion

Is a differentiation strategy for the iterative
computations really needed in practice, as yet
more focused strategies exist ?

Have you samples of code where this strategy
could be effective ?

Contexte général

2

Discussion

Is a differentiation strategy for the iterative
computations really needed in practice, as yet
more focused strategies exist ?

Have you samples of code where this strategy
could be effective ?

Thank you for your attention!

