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Contexte général Adjoint Algorithms 
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• Adjoint algorithms : the most efficient way to obtain 
gradient of a numerical simulation 
 

• Computing the gradients has a cost (time, memory) 
 

• One way around : take advantage of the structures of  
      the given program (parallel loops, fixed point methods,..) 

 

Parameters 
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Fixed Point  Iterations  

• Many implicit functions  𝑭 𝒛, 𝒙 = 𝟎 are computed 
with convergent iterations: 

 
Initial guess  𝒛𝟎 𝒙  
 
Iterate 𝒛𝒌+𝟏(𝒙) = 𝝋 𝒛𝒌(𝒙) , 𝒙  
 
To fixed point 𝒛∗(𝒙) = 𝝋 𝒛∗(𝒙) , 𝒙  
 

• Followed by an objective function   𝒚 = 𝒇 𝒛∗, 𝒙  



Contexte général Adjoint of  Fixed Point  Iterations 

• First iterations of a fixed-point search : 
      𝒛𝟎 𝒙  
       𝒛𝟏 𝒙  = 𝝋 𝒛𝟎(𝒙) , 𝒙  
      ….. 
      operate on a meaningless state vector =>No adjoint 
      needed 
• Adjoin only the (few) last iterations 
• Save trajectory storage 

At least two authors have studied mathematically fixed  
point iterations with the goal of defining an efficient  
adjoint : Christianson and Griewank 



𝒛𝒌+𝟏 = 𝝋 𝒛𝒌(𝒙) , 𝒙  𝒛∗ 

𝒘 ∗ 

Contexte général Christianson’s strategy (BC) 

        𝒚 = 𝒇 𝒛∗, 𝒙  

         𝒚 = 𝟏 
         𝒛 =  𝒚 . 𝒇𝒛(𝒛∗, 𝒙) 
         𝒙 =  𝒚 . 𝒇𝒙(𝒛∗, 𝒙) 

  𝒘 𝒌+𝟏= 𝒘 𝒌. 𝝋𝒛 𝒛∗, 𝒙 + 𝒛  

Forward Sweep 

 Backward Sweep 

 𝒙 =  𝒘 ∗. 𝝋𝒙 𝒛∗, 𝒙 + 𝒙  

𝒘 𝟎= 𝒛  



Contexte général Griewank’s  strategy (AG) : Piggyback 

 𝒚 = 𝒇 𝒛∗, 𝒙  

 𝒛𝒌+𝟏 = 𝒛𝒌- 𝑷𝒌. 𝒘𝒌 

𝒛 𝒌 = 𝒘 𝒌. 𝑭𝒛(𝒛𝒌, 𝒙) + 𝒚 .𝒇𝒛(𝒛𝒌, 𝒙)   

  𝒘𝒌 = 𝑭(𝒛𝒌, 𝒙) 

𝒘 𝒌+𝟏 = 𝒘 𝒌- 𝒛 𝒌. 𝑷𝒌 

𝒙 ∗ = 𝒘 ∗. 𝑭𝒙(𝒛∗, 𝒙) + 𝒚 .𝒇𝒙(𝒛∗, 𝒙)   

  𝒘𝒌 = 𝑭(𝒛𝒌, 𝒙) 

 𝒛𝒌+𝟏 = 𝒛𝒌- 𝑷𝒌. 𝒘𝒌 

𝒛∗,   𝒘 ∗ 𝒛∗ 

Original Program Adjoint  Program 



Contexte général AG and BC:  Similarities 

 
• Both manage  to avoid naïve inversion of the original 

sequence of iterations => Save trajectory storage 
 

• Stopping criterion of the adjoint fixed point is distinct 
from the original test 
 

• Convergence rate is similar for the derivative 
computation and the original computation 
 
 



AG and BC:  Differences 

AG BC 

Shape of 
iteration step 
 

Additional  
Assumptions 
𝒛𝒌+𝟏 = 𝒛𝒌- 𝑷𝒌. 𝒘𝒌 

 General         
𝒛𝒌+𝟏 = 𝝋 𝒛𝒌, 𝒙  
 
 

Start of 
adjoining 
 

From the  
Beginning  
(more iterations) 

After a  total 
convergence 
 

Sequel of F.P. 
loop 
 

Adjoin repeatedly 
 

Adjoin once 
 



Mostly for implementation reasons, we want : 

Reasons for our choice 

• No assumption for iteration shape 
 

• no multiple differentiation of the sequel 
 

• differentiate only the (few) last iterations 
 

• to preserve the 2 sweeps structure of the adjoint 
code 
 



𝒙  𝒛 

Identifying the F.P. structure 

In the computation of the adjoint (𝒘 𝒌+𝟏= 𝒘 𝒌. 𝝋𝒛 𝒛∗, 𝒙 + 𝒛 ) 
we need to determine (𝝋, 𝒛, 𝒙) in the original program => 
Adding new directives 

            
            $AD Begin FP loop 

       REPEAT UNTIL ( 𝒛 stationary) 
              $AD Begin FP iteration 
              𝐳 = 𝝋 𝒛, 𝒙  
              $AD END FP iteration 
  END REPEAT 

        $AD END FP loop 
        𝒚 = 𝒇(𝒛, 𝒙) 
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Discussion 

Is a differentiation strategy for the iterative 
computations really needed in practice, as yet 
more focused strategies exist ? 

Have you samples  of code where this strategy 
could be effective ? 
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Thank you for your attention! 


