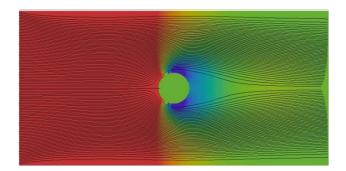


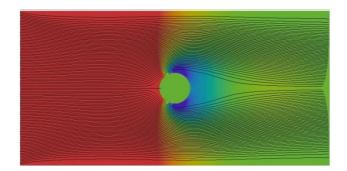
Geometric Immersed Boundaries (GIB) – A New Framework For Applying Boundary Conditions in OpenFOAM®


October 19 - 21, Stuttgart, Germany

Georgios Karpouzas, ENGYS Ltd. – NTUA Eugene de Villiers, ENGYS Ltd.

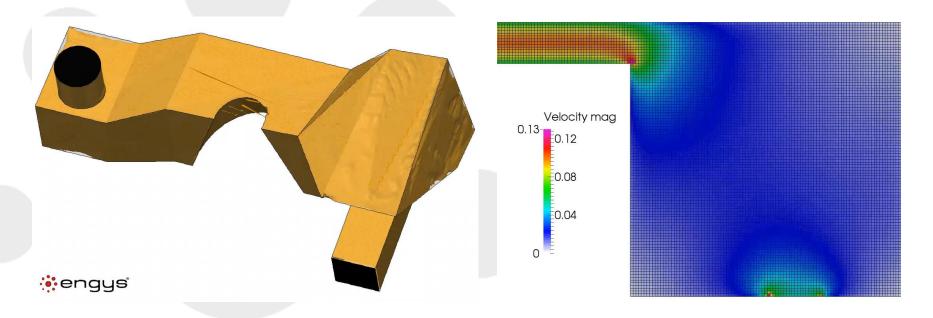
info@engys.com | Tel: +44 (0)20 32393041 | Fax: +49 (0)20 3357 3123 | www.engys.com

- Motivation
- Methodology
- Validation
- Applications
- Moving GIB
- Closing Comments



2

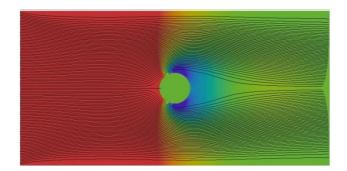
© 2015 ENGYS Ltd. (http://engys.com)


- Motivation
- Methodology
- Validation
- Applications
- Moving GIB
- Closing Comments

Motivation

- Topology optimization
- Level-set coupled with the continuous adjoint method

*G. Karpouzas, E.M. Papoutsis-Kiachagias, T. Schumacher, E. de Villiers, K.C. Giannakoglou, C. Othmer. **"Adjoint Optimization for Vehicle External Aerodynamics",** JSAE - to be published soon *C. Othmer. **"Adjoint methods for car aerodynamics",** Journal of Mathematics in Industry 2014 4:6



Motivation

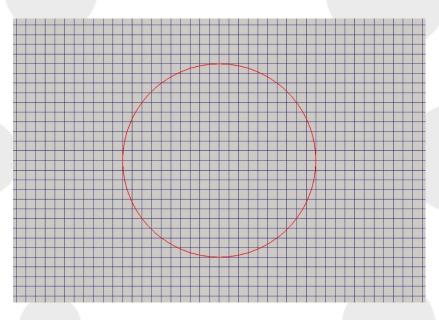
- Currently simple immersed boundaries (IB) are applied on the fluid-solid interface
- Resistance/porosity is added to the solid cells of the matrix which blocks the velocity
- Lacks of accuracy especially in the turbulent cases
- In-situ IB primal results do not exactly match boundary fitted equivalent
- Results in approximate objective/optimal
- Solution: Implement immersed boundaries with the same accuracy as a real boundary

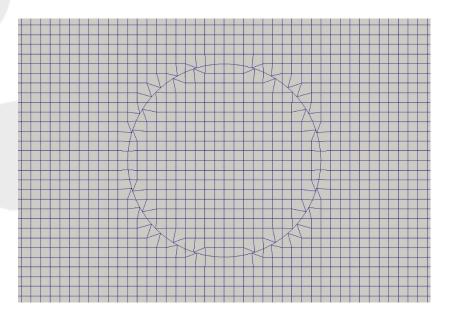
- Motivation
- Methodology
- Validation
- Applications
- Moving GIB
- Closing Comments

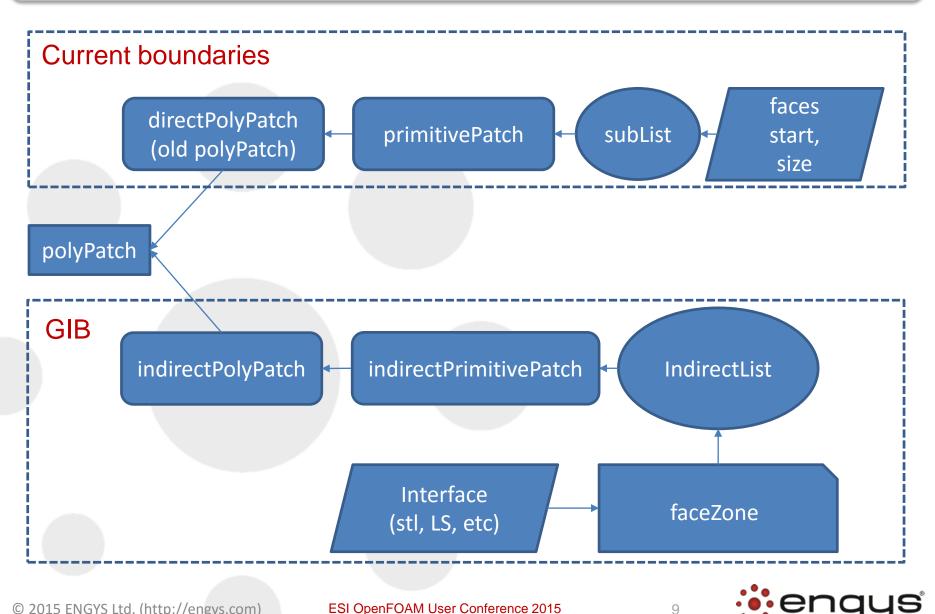
6

© 2015 ENGYS Ltd. (http://engys.com)

Methodology | Goals


- Same accuracy as body fitted meshes
- Automation: Work with every solver and operation
- Same interface as the other boundaries
- Apply the existing boundary conditions (fixedValue, zeroGradient...) on the immersed boundaries




Methodology | Concept

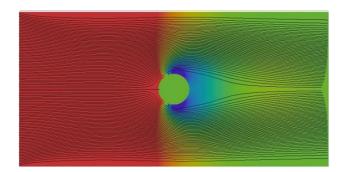
- Perform snapping on the interface (LS, .stl, etc.)
- After snapping some of the faces are located on the interface.
- All the quantities needed from the finite volume are updated
- Problem: There is not a code structure in OpenFOAM[®] to apply boundary conditions in internal faces.

© 2015 ENGYS Ltd. (http://engys.com)

ESI OpenFOAM User Conference 2015

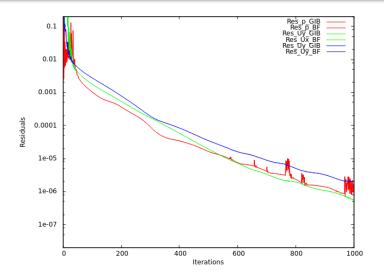
- Two new boundaries (one from each side) are constructed based on the faceZone and the flipMap.
 - faceZone represents the addressing of the face list that constructs the GIB
 - The flipMap boolean list is used to define the two sides of the GIB
- Based on faceZone and the flipMap, the geometric characteristics of the boundary (Cf, Sf etc) are calculated from the internal faces.

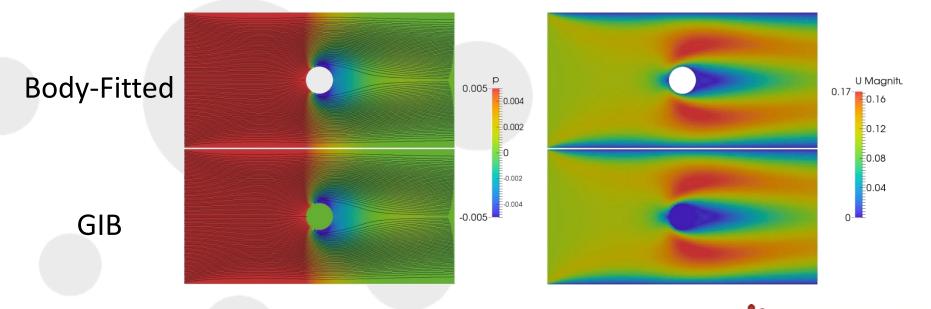
- Existing boundary conditions can be used on the GIB.
- The GIB boundary faces give the appropriate contributions to the matrix.
- The GIB can behave like:
 - a pass-through (like not existing)
 - normal boundary (fixedValue, zeroGradient etc)
 - boundary with communication (CHT tempetarure boundary condition)



Boundary file sample	U Boundary Conditions sample	p Boundary Conditions sample										
<pre>7 (Inlet { type patch; physicalType inlet; nFaces 100; startFace 39700; } ib1 { type indirectWall; neighbourPatch ib2; faceZone ib; indirectPolyPatchType master; startFace 80300; } ib2 { type indirectWall; neighbourPatch ib1; faceZone ib; indirectPolyPatchType slave; startFace 80300; })</pre>	<pre> boundaryField { Inlet { surfaceNormalFixedValue; redValue uniform -1; } ib1 { type fixedValue; value uniform (0 0 0); } ib2 { type fixedValue; value uniform (0 0 0); } }</pre>	<pre> boundaryField { Inlet { type zeroGradient; } ib1 { type zeroGradient; } ib2 { type zeroGradient; } }</pre>										

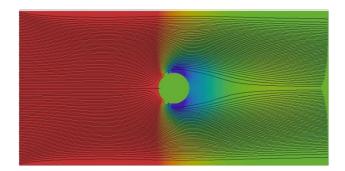
- Changes in ~ 100 files
- OpenFoam library:
 - polyMesh/patch to insert the GIB classes
 - GeometricField to automate the operators
 - GAMG agglomerator
- finiteVolume library:
 - fv(s)PatchField, fvPatch
 - fvm, fvc operators
- Parallelization
- Mapping functions for moving GIB
- Wall distance for turbulence


- Motivation
- Methodology
- Validation
- Applications
- Moving GIB
- Closing Comments



Validation | cylinder

- Bodyfitted vs GIB cylinder results
- Identical residuals-results (machine accuracy)

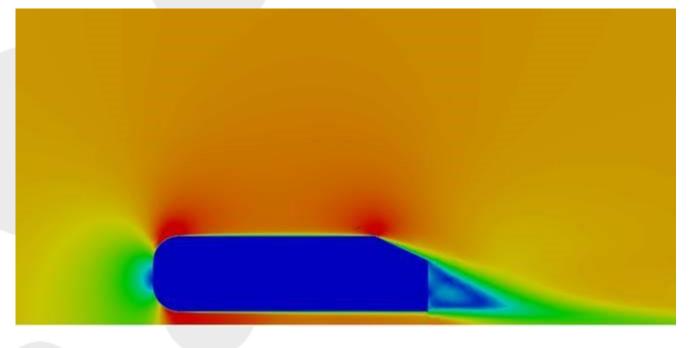


© 2015 ENGYS Ltd. (http://engys.com)

ESI OpenFOAM User Conference 2015

- Motivation
- Methodology
- Validation
- Applications
- Moving GIB
- Closing Comments

16

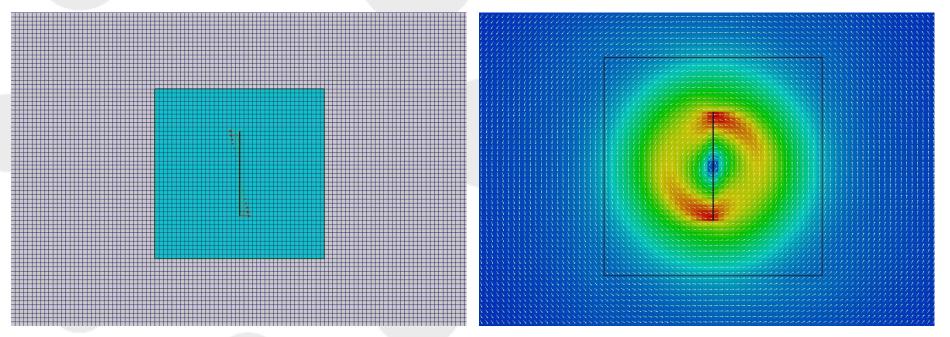


© 2015 ENGYS Ltd. (http://engys.com)

Applications | Ahmed

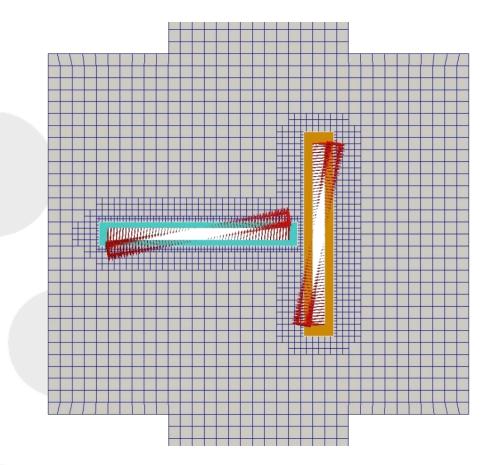
- Fully parallel
- Works with turbulence
- No top level change is required in the standard solvers

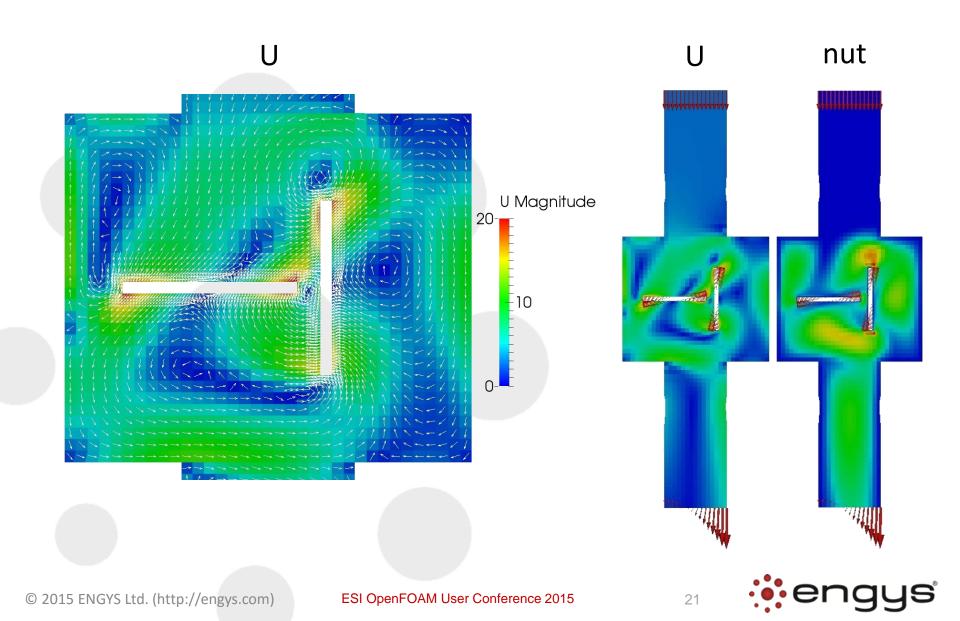
© 2015 ENGYS Ltd. (http://engys.com)


Applications | MRF | concept

- Current limitation:
 - The cellZone must be circular.
 - <u>Reason</u>: The relative and absolute fluxes should be the same at the interface of stationary and rotating part
- We apply GIB on the interface:
 - The pressure boundary is a pass-through
 - The velocity and the derived fields (phi, ...) takes the value of the GIB wherever needed from the FV
 - The relative flux is added only in one side of the GIB

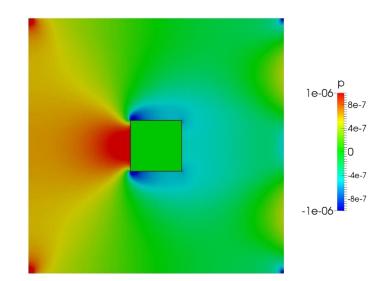
Applications | MRF | simpleMixer

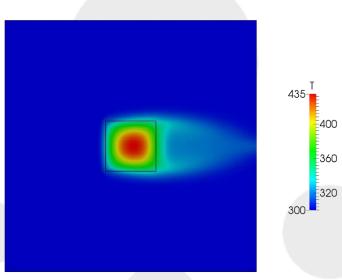

- Simple blockMesh geometry with a blade and a cellZone.
- GIB are applied at the perimeter of the cellZone

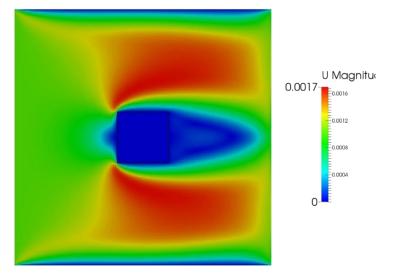

Applications | MRF | gearPump

- Pressure-pressure boundaries at the top and bottom
- Cyan and orange areas are two cellZones
- Two GIB are applied on the two interfaces (outside the two MRFzones).
- GIB boundary conditions are coupled (communication is required)
- The standard MRF method in OpenFOAM[®] not able to simulate the flow

Applications | MRF | gearPump

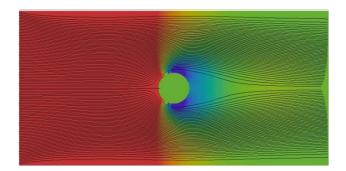

Applications | CHT | Current technique


- Multi-region
- Everything is segregated. Basic equations:
 - For fluid:
 - Pressure
 - Velocity
 - Energy (enthalpy or temperature)
 - For solid:
 - Energy (enthalpy or temperature)
- Result: slow solution



Applications | CHT | GIB

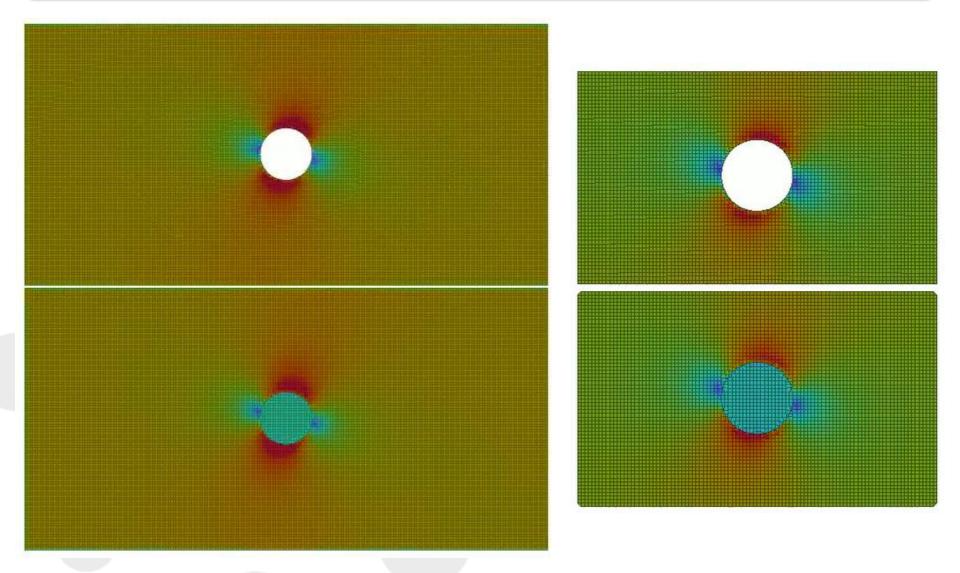
- One region CHT
- The solid and fluid are communicating using GIB (black line)
- Boundary conditions for T or h are coupled because communication is required.
- Heat source is applied on the solid
- 1 matrix -> faster convergence



© 2015 ENGYS Ltd. (http://engys.com)

ESI OpenFOAM User Conference 2015

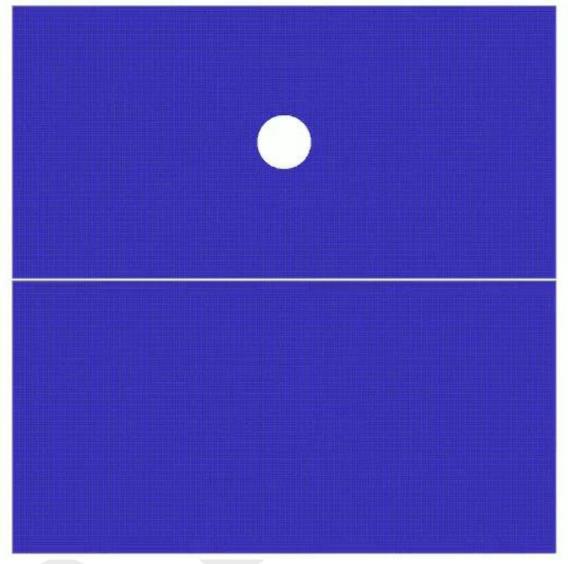
- Motivation
- Methodology
- Validation
- Applications
- Moving GIB
- Closing Comments


Moving GIB | Basic steps

- New location of the interface
- Perform snapping from the base mesh to the new interface
- faceZone update
- polyPatches class update
- GIB patch Fields update with mapping
- Special treatment for the freshly solid/fluid cells is needed

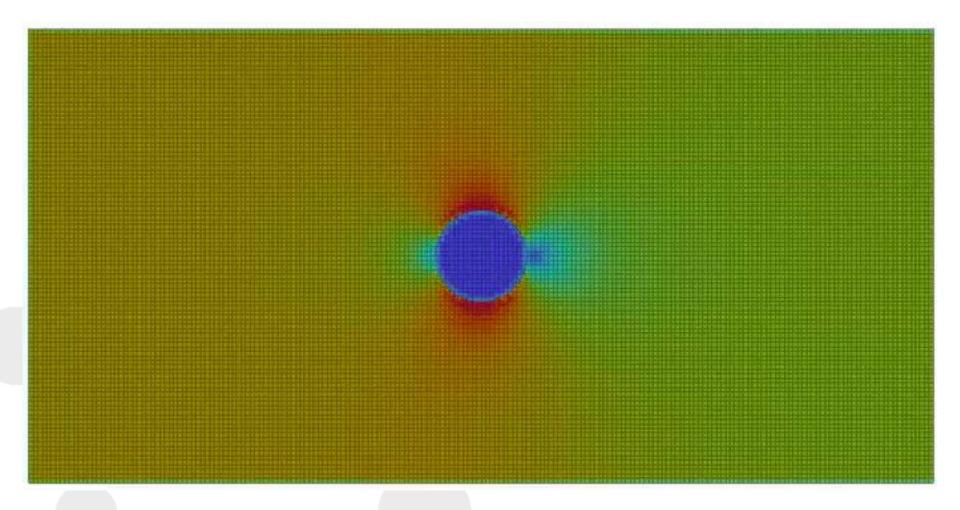
H			H	-	H		H			ł	H	⊢													+			+	+	t		t							H					H	đ
t	t	H		-			t	E		t	t	t	H			H		t							+			+	+	+	t	t										н	H	-	Ē
t	+	H		-	H		t	tt		t	t	H	H			H	-			-	H				+	-		+	+	+		t										н		-	T
H	+	-		-		-	÷	÷	-	÷	H	÷				-	-		-						+	-	+	+	+	+		÷												-	-
	+	-	8	-		-	÷	÷		÷	18	+				-	-			-					+	-	+	+	+	+	+	1													11
-	-	-		-		-	H	10	-	÷	12	-	e			H	-		-	-					+	-	-	+	+	+	÷	1												-	-
	11			-		10	1		125	-	14							10							-	-		-	-	-	-													21	8
1				100		100	18	12	19		10						25	10	10	1.5							2					10					111							11	10
1	1			10		22	8	18	15	10	12		H			12	12	10	0	100								8							2.1				15	15				10	12
1	1		1			13		18	161		18		12		11	28	26	15	M	19			1								1	16	12							11				10	
1						18	П	П		Г	П	Г	12		13	11	15	45	13.0										Т	Т		12	12											1	
17	1					13						1			11		18	111	21												12	19					1								H
F	-						t	t		t	t	t													+					t	t	t													1
H		F		-			t			t	tt	t	H												+	-		+		+		t													1
H	t	H		-			t	÷	-	t	tt	t	H			÷	-								+	-		+	+	۰	t	÷						1.1					H		
-	+	H		-			H	÷	-	+	H	-					-			-		H			+	-	-	+	+	+	+	H												-	
-	÷	H		-		-	H	÷		+-	14	-	÷		1	18	-	-	-	-				2	-	-	-	+	+	+	÷.	+-											-	-	
12	-	F.	1	-	H		H	-	1	+	1	-	H		14	H	-			-					+	-		-	+	+	+	-												1	2
		Ц							18		L.					10				10	1				+	-	4	1	1	1	1	8							10		1			1	1
18	16		18					18	10				1				18		L	12	12	1					2	5	千	1	1		1				8								
E	1	Ľ	1				1			ſ	ſ	E	11		10	1		ſ	D	Y					1			1	1		5	ſ													
R								18	-8	Г						-93	-53	2	Ľ	1			-			82					T	5	23												
12								18	19			- 19			11		7	11	10			8	2	80			12				Т	T١	\mathcal{O}												
							t		0.		11				11	h	÷	10		12			00										ł۴	-											1
H		H		-			t	12		t	tt	H	H			12	1								+			+	+	+										12		н			
÷	-	H		-		-	t	÷	-	÷	÷	-	H			÷7	-	H	-	-	H				+		-	+	+	÷		÷	P	4										-	
-	+	H		-		10	H	÷	-	٠	÷	÷	H		-	¥	-		-	1			100		+	-	+	+	+	+	+	+	-	¥	28									-	-
-	+	-		-		-	H		-	+-		-	-			11		-	-	-					-	-	-	+	+	+	+	-		44	92									-	-
5		-		-				18	95	-	12	-	13		14	2			10	122					-	-		-	-	-	-		1				2			15				8	8
16	193	21	28			10		10	-61		11		18	25	10	25	-85	10	16	12	10						2				11	10	0.91		20		1	11						10	9
						8	8	8	163						-81	15		10	1.0	2.5												18			16		15		8			8	8	21	15
							18	18	15		10		18			10	110	10	10	100										Т		18			3									61	
				10		10	8	18	10				16			10	23	10	10	10										Т		18	20	v				100							
12							t	t			10	-	10			7	235	111	1.1										+	+			100	л	62										
÷	t	H					t	÷		÷	÷	÷				f	5								+	-		+	+	+		t	0									н			÷,
H	÷	H		-			H	÷		÷	t	÷				H	74	-							+	-		+	+	+		t	-5									н	H		
-	-	H		-		-	H	÷	-	+	H	÷			-	-	-	М	1	-					+	-		+	+	+	+-	3.	6											-	20
-	-	-		-		-	H			+	-	-				-	-	13	N						+	-		+	+	+.	4.	4												22	22
-				-		-	1	10	1	-		-				12		10		ĥ.,					-	-		-	-	J.	7-	10									100			-	82
13	195	12				22		12	1.5				1.5		12			12	2	\mathcal{L}	λ.		31				-1		÷	Υ.	ι.				99-						1.5				
15	100		21	12		12		18	10	1	11	12	12		121	11	16			31				4	+	-	-	đ		1	15	18	28	15	24					0	199			8	
E		Ľ					1	8	18	1	LĨ		1			1				100											13	8											11	1	
	10					13	Г			Г	Г	Г	1																	T															
Г	T	Ē				1	П	T	10	T	T	T	Ľ			E		T	T.	T.												1Ú											a t	1	
r	1	r					t	t	10	t	t	t	Ľ		1	F		T					60		1			t	+	1		10										н			
F	t	H			H	H	t	t	H	t	t	÷	H		1P	H	-	t							+				+	+	t	H									H	H	H		÷.
H	1	H	1	H	H	H	H	1	H.	÷	÷	-	H	-	1	H	H	£.	F	-					1		1	+	+	1		÷		H	1	8	н		1	H.	12			1	1
H	1	H		H	H	H	H	1	÷.	÷	#	÷		-	P.	H		£.		-					+		1	-	+	+	+	÷				8			11	1				4	1
L		L.				1		1	10	1	10		Ľ		10		1	16	16						-					+	-	1							15					2	2
L.	18	Į.					μ	18	11		L.		Ľ		10		1		1				92							1		10		10					10					10	1
	18							18	11						10		1	1	18		1		90			9.0						18		16			10			멉	10		11	10	
Ľ	17	Ľ			I		1	17	LÎ	Г	IĨ	17	IĨ	I	17	I	17	17	1						T	T	T	Г	Г	Г	Г	17											1T	1	
1		Г					Г		11		18		1		10	13	1		0											Т		10		16											12
1		1					t	t		t	ti	t	Ľ			t									+					+		t													
H	÷	H	H		H		t	÷		t	t	H	H			t		t			H				+	+		+	+	+	+	t					H			H		н	H	e.	
H	-	H	1	H	H		f	1	H	1	ŧ÷	-	H			e		F.	-	-					+		-	+	+	+	+	÷			12	8			1					-	2
H	+	H	H	-	H	1	H	1Ē	1	÷	H	-	H		-	H	-	1							+	+		-	+	+	+	ŧ.					H			H				-	
1	1	L		1			L	10	18	1	14	1	Ľ					10							4			-	+	+	-				1									2	2
	1			1		1	Ц		<u>til</u>		1		12			10	1	10											-	1							1							1	2
10		11	nii i		11 I I		10	10	10	10	2 16																																		

Moving GIB | movingCylinderBenchmark

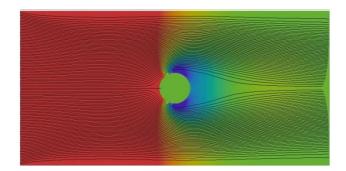


© 2015 ENGYS Ltd. (http://engys.com)

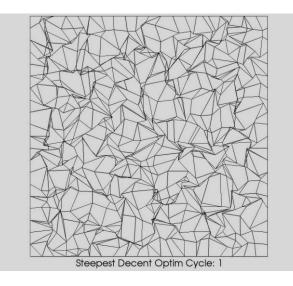
ESI OpenFOAM User Conference 2015


Moving GIB | crashingCylinder

© 2015 ENGYS Ltd. (http://engys.com)


Moving GIB | growShrink Cylinder

© 2015 ENGYS Ltd. (http://engys.com)


- Motivation
- Methodology
- Validation
- Applications
- Moving GIB
- Closing Comments

Closing comments | Next steps

- Closing comments:
 - New framework for applying boundary condition in internal group of faces is implemented
 - General implementation. Top level change is not required.
- Next steps:
 - Coupling with the adjointFoam engine
 - Mesh optimization for improving the mesh quality near the interface
 - Mesh adaptation

Looking forward

- It can be applied in every application with a static/moving interface.
- Applications such as:
 - CHT
 - MRF
 - FSI
 - multiphase
 - Gear pumps
 - 6 DoF
- Adjoint version of them
- Challenges: Add layers to the GIB with overset grids

The end

Thanks for your time! Any questions?

© 2015 ENGYS Ltd. (http://engys.com)

ESI OpenFOAM User Conference 2015

