Output-based R-refinement and the Use of Geometric Multigrid for Truncation Error Estimation in CFD.

Testing

Mateusz Gugala, Jens-Dominik Müller

Queen Mary University of London, School of Engineering and Material Science

September, 2015

Contents

Introduction

Mesh adaptation and geometric multigrid

Testing

R-refinement

Summary

Introduction / background

- Part of AboutFlow project
 Adjoint based optimisation for unsteady and industrial flows.
- My project goals:
 - goal: reduce adjoint-based optimisation run time
 - method: use **mesh adaptation** and one-shot approach.
 - Start optimisation with low-fidelity solutions, go towards high-fidelity when converging to optimum.
- Working with an in-house code developed at QMUL:
 - Finite Volume, vertex centred
 - Steady/Unsteady, Inviscid/Laminar/Turbulent (SA model)
 - $Geometric \ multigrid$, $Explicit/Implicit \ (JT-KIRK^1)$ solver
 - 2nd spatial accuracy, ROE/AUSM₊^{up} flux
 - Discrete adjoint solver (*Tapenade*²)

²AD tool developed at Inria http://www-sop.inria.fr/tropics/

¹Shenren Xu, Jens-Dominik Müller, Stabilisation of the discrete steady adjoint solver using Jacobian-Trained Krylov-Implicit-Runge-Kutta (JT-KIRK) algorithm, (in revision)

Mesh adaptation and error estimation allows to increase reliability of numerical simulation. Main aspects in mesh adaptation:

- Error estimation
 - discretisation error (δU
 - truncation error (δR
 - output error (δL)
- Adaptation indicator evaluation (scalar, metric)
 - feature-based: uses some form of discretisation error
 - truncation-based: direct use of some form of truncation error
 - output-based: e.g. adjoint-weighted truncation error
- Adaptation method/algorithm
 - r-refinement: relocate mesh nodes, keep mesh size constant
 - h-refinement: refine mesh by subdividing cells/edges
 - p-refienemnt: changing order of discretisation polynomial

Mesh adaptation and error estimation allows to increase reliability of numerical simulation. Main aspects in mesh adaptation:

- Error estimation
 - discretisation error (δU)
 - truncation error (δR)
 - output error (δL)
- Adaptation indicator evaluation (scalar, metric)
 - feature-based: uses some form of discretisation error
 - truncation-based: direct use of some form of truncation error
 - output-based: e.g. adjoint-weighted truncation error
- Adaptation method/algorithm
 - r-refinement: relocate mesh nodes, keep mesh size constant
 - h-refinement: refine mesh by subdividing cells/edges
 - p-refienemnt: changing order of discretisation polynomial

Testing

Mesh adaptation and error estimation allows to increase reliability of numerical simulation. Main aspects in mesh adaptation:

Error estimation

Introduction

- discretisation error (δU)
- truncation error (δR)
- output error (δL)
- Adaptation indicator evaluation (scalar, metric)
 - feature-based: uses some form of discretisation error
 - truncation-based: direct use of some form of truncation error
 - output-based: e.g. adjoint-weighted truncation error
- Adaptation method/algorithm
 - r-refinement: relocate mesh nodes, keep mesh size constant
 - h-refinement: refine mesh by subdividing cells/edges
 - p-refienemnt: changing order of discretisation polynomial

Testing

Mesh adaptation and error estimation allows to increase reliability of numerical simulation. Main aspects in mesh adaptation:

Error estimation

Introduction

- discretisation error (δU)
- truncation error (δR)
- output error (δL)
- Adaptation indicator evaluation (scalar, metric)
 - feature-based: uses some form of discretisation error
 - truncation-based: direct use of some form of truncation error.
 - output-based: e.g. adjoint-weighted truncation error
- Adaptation method/algorithm:
 - r-refinement: relocate mesh nodes, keep mesh size constant
 - h-refinement: refine mesh by subdividing cells/edges
 - p-refienemnt: changing order of discretisation polynomial

Testing

Introduction

Mesh adaptation and geometric multigrid

Testing

R-refinement

Summary

Output-based error estimation - math

Discretisation error (δU_h) :

$$\delta U_h = U - U_h \tag{1}$$

$$R(U) - R(U_h) = \frac{\partial R}{\partial U}\Big|_{U_h} (U - U_h) + \dots$$
 (2)

$$J(U) - J(U_h) = \left. \frac{\partial J}{\partial U} \right|_{U_h} (U - U_h) + \dots$$
 (3)

$$\delta J_h \approx \left. \frac{\partial J}{\partial U} \right|_{U_h} \left. \frac{\partial R}{\partial U}^{-1} \right|_{U_h} \delta R_h = -\left. v_h^T \right|_{U_h} \delta R_h \tag{4}$$

Output-based error estimation - math

Discretisation error (δU_h):

$$\delta U_h = U - U_h \tag{1}$$

Truncation Error (δR_h) :

$$R(U) - R(U_h) = \frac{\partial R}{\partial U} \Big|_{U_h} (U - U_h) + \dots$$
 (2)

Testing

$$J(U) - J(U_h) = \left. \frac{\partial J}{\partial U} \right|_{U_h} (U - U_h) + \dots$$
 (3)

$$\delta J_h \approx \left. \frac{\partial J}{\partial U} \right|_{U_h} \left. \frac{\partial R}{\partial U}^{-1} \right|_{U_h} \delta R_h = -\left. v_h^T \right|_{U_h} \delta R_h \tag{4}$$

Discretisation error (δU_h) :

$$\delta U_h = U - U_h \tag{1}$$

Truncation Error (δR_h) :

$$R(U) - R(U_h) = \frac{\partial R}{\partial U} \Big|_{U_h} (U - U_h) + \dots$$
 (2)

Testing

Output error (δJ_h) :

$$J(U) - J(U_h) = \frac{\partial J}{\partial U} \Big|_{U_h} (U - U_h) + \dots$$
 (3)

Replacing δU_h in (3) with discretisation error in (2)

$$\delta J_h \approx \left. \frac{\partial J}{\partial U} \right|_{U_h} \left. \frac{\partial R}{\partial U}^{-1} \right|_{U_h} \delta R_h = -\left. v_h^T \right|_{U_h} \delta R_h \tag{4}$$

Output-based error estimation - math

Discretisation error (δU_h) :

$$\delta U_h = U - U_h \tag{1}$$

Truncation Error (δR_h) :

$$R(U) - R(U_h) = \frac{\partial R}{\partial U}\Big|_{U} (U - U_h) + \dots$$
 (2)

Output error (δJ_h) :

$$J(U) - J(U_h) = \frac{\partial J}{\partial U} \Big|_{U_h} (U - U_h) + \dots$$
 (3)

Replacing δU_h in (3) with discretisation error in (2):

$$\delta J_h \approx \left. \frac{\partial J}{\partial U} \right|_{U_h} \left. \frac{\partial R^{-1}}{\partial U} \right|_{U_h} \delta R_h = -\left. v_h^{\mathsf{T}} \right|_{U_h} \delta R_h \tag{4}$$

- 1. Solve primal

- 1. Solve primal
- 2. Restrict primal solution to coarse mesh

- 1. Solve primal
- 2. Restrict primal solution to coarse mesh
- 3. Calculate residual on coarse mesh
- 4. Prolong residual to fine mesh
- 5. Calculate truncation error (Note: $R_h(U_h) = 0$ at convergence

- 1. Solve primal
- 2. Restrict primal solution to coarse mesh
- 3. Calculate residual on coarse mesh
- 4. Prolong residual to fine mesh

Testing

- 1. Solve primal
- 2. Restrict primal solution to coarse mesh
- 3. Calculate residual on coarse mesh
- 4. Prolong residual to fine mesh
- 5. Calculate truncation error (Note: $R_h(U_h) = 0$ at convergence)

Adaptation sensor/indicator

Testing

Output error estimation:

$$\delta J_h \approx - \left. v_h^T \right|_{U_h} \delta R_h \tag{5}$$

Solve adioint on fine mesh:

$$\frac{\partial R}{\partial U}^{T} \bigg|_{U_{h}} v_{h} = -\left. \frac{\partial J}{\partial U}^{T} \right|_{U_{h}} \tag{6}$$

Adaptation indicator (adjoint-weighted truncation error):

$$I_s = \left| v_h^T \right|_{U_h} \delta R_h \tag{7}$$

Adaptation sensor/indicator

Testing

Output error estimation:

$$\delta J_h \approx - \left. v_h^T \right|_{U_h} \delta R_h \tag{5}$$

Solve adjoint on fine mesh:

$$\left. \frac{\partial R}{\partial U}^{T} \right|_{U_{h}} v_{h} = -\left. \frac{\partial J}{\partial U}^{T} \right|_{U_{h}} \tag{6}$$

$$I_s = \left| v_h^T \right|_{U_h} \delta R_h \tag{7}$$

Adaptation sensor/indicator

Testing

Output error estimation:

$$\delta J_h \approx - \left. v_h^T \right|_{U_h} \delta R_h \tag{5}$$

Solve adjoint on fine mesh:

$$\left. \frac{\partial R}{\partial U}^{T} \right|_{U_{h}} v_{h} = -\left. \frac{\partial J}{\partial U}^{T} \right|_{U_{h}} \tag{6}$$

Adaptation indicator (adjoint-weighted truncation error):

$$I_{s} = \left| v_{h}^{T} \right|_{U_{h}} \delta R_{h}$$
 (7)

Testing

Introduction

Mesh adaptation and geometric multigric

Testing

R-refinement

Summary

Interpolation operators

Order of accuracy of transfer operators should be at least consistent with discretisation accuracy of the solver to avoid loosing information when transferring it between meshes.

- Test restriction operator: I_h^H and prolongation operator: I_H^h
- Accuracy test (square domain 20x20 nodes): restrict constant/linear/quadratic fields to coarse mesh and prolong back to fine, check errors.
 - Constant field $\phi(x,y) = const$: PASSED (error \sim 0)
 - Linear field $\phi(x,y) = x + y$: PASSED (error ~ 0)
 - Quadratic field $\phi(x, y) = x^2 + y^2$: PASSED (error converging with $2^{nd}O$ slope)

$$\left|\phi_{|_h} - \phi_h^H\right|_2 \tag{8}$$

Interpolation operators

- 1. Define 'made up' solution: U = U(X), X = [x, y, z]
- 2. Define continuous system of equations, e.g Euler's: R(U)
- 3. Calc. sources arising from 'made up' sol.: R(U(X)) = f(X)
- 4. Solve discrete system, subject to Dirichlet BC's:
- 5. $\lim_{h\to 0} (\delta U_h) = 0$, $\delta U_h = U(X)|_h U_h$

$$R_h(U_h) - f(X)|_h = 0, \quad U(X)|_{\partial\Omega_h}$$

$$f(X)_h$$

$$U(X)_{\partial\Omega_h}$$

- 1. Define 'made up' solution: U = U(X), X = [x, y, z]
- 2. Define continuous system of equations, e.g Euler's: R(U)

$$R_h(U_h) - f(X)|_h = 0, \quad U(X)|_{\partial\Omega_h}$$

$$f(X)_h$$

$$U(X)_{\partial\Omega_h}$$

- 1. Define 'made up' solution: U = U(X), X = [x, y, z]
- 2. Define continuous system of equations, e.g Euler's: R(U)
- 3. Calc. sources arising from 'made up' sol.: R(U(X)) = f(X)
- 4. Solve discrete system, subject to Dirichlet BC's:
- 5. $lim_{h\to 0}(\delta U_h) = 0$, $\delta U_h = U(X)|_h U_h$

$$R_h(U_h) - f(X)|_h = 0, \quad U(X)|_{\partial\Omega_h}$$

$$f(X)_h$$

$$U(X)_{\partial\Omega_h}$$

Manufactured solution (M.S.) - intro

- 1. Define 'made up' solution: U = U(X), X = [x, y, z]
- 2. Define continuous system of equations, e.g Euler's: R(U)
- 3. Calc. sources arising from 'made up' sol.: R(U(X)) = f(X)
- 4. Solve discrete system, subject to Dirichlet BC's:

5.
$$\lim_{h\to 0} (\delta U_h) = 0$$
, $\delta U_h = |U(X)|_h - U_h$

Manufactured solution (M.S.) - intro

- 1. Define 'made up' solution: U = U(X), X = [x, y, z]
- 2. Define continuous system of equations, e.g Euler's: R(U)
- 3. Calc. sources arising from 'made up' sol.: R(U(X)) = f(X)
- 4. Solve discrete system, subject to Dirichlet BC's:

5.
$$\lim_{h\to 0} (\delta U_h) = 0$$
, $\delta U_h = U(X)|_h - U_h$

- 1. Define 'made up' solution: U = U(X), X = [x, y, z]
- 2. Define continuous system of equations, e.g Euler's: R(U)
- 3. Calc. sources arising from 'made up' sol.: R(U(X)) = f(X)
- 4. Solve discrete system, subject to Dirichlet BC's:

5.
$$\lim_{h\to 0} (\delta U_h) = 0$$
, $\delta U_h = U(X)|_h - U_h$

- 1. Define 'made up' solution: U = U(X), X = [x, y, z]
- 2. Define continuous system of equations, e.g Euler's: R(U)
- 3. Calc. sources arising from 'made up' sol.: R(U(X)) = f(X)
- 4. Solve discrete system, subject to Dirichlet BC's:
- 5. $\lim_{h\to 0} (\delta U_h) = 0$, $\delta U_h = U(X)|_h U_h$

Manufactured solution (M.S.) - test

Testing

- 1. Use set of 7 square meshes, regular quad cells. ($10 \times 10 \div$ 640x640 nodes)
- 2 Solver tests:
 - δU_h : Confirm accuracy of discretisation scheme to be $2^{nd}O$.
 - δJ_h : Check convergence of cost function error, (drag and lift force integrated over sides and bottom boundaries)
- Truncation error estimation test:
 - δR_h : Check convergence of estimated truncation error

Discretisation error

• 2nd order accuracy of the flow solver confirmed

Refinement

Cost function error

• Cost function converging with 2nd order slope.

Estimated truncation error

- Estimated truncation error is converging (proposed method seems valid).
- As 'h' approaches 0, the slope will become 1^{st} order due to 1st order accurate integration of residuals at boundaries.

Refinement

Introduction

Mesh adaptation and geometric multigric

Testing

R-refinement

Summary

- 1. Solve flow: $R_h(U_h) = 0$
- 2. Solve adjoint: $R_h(v_h) = 0$
- 3. Estimate truncation error: δR_h
- 4. Get output-based adaptation indicator (scalar):

$$I_s = \left| v_h^T \right|_{U_h} \delta R_h \left| \right|$$

- 5. Calculate gradient of scalar indicator field: ∇I_s
- Mesh deformation using linear elasticity with body Force source term:

$$\nabla \sigma = f, \ f = \nabla \mathbf{I}_s$$

 Repeat until smallest edge length or volume is below specified thresholds

Note: mesh movement at domain boundary is allowed only in its tangent direction

Cost function convergence

- Cost function converge towards exact value. Final error (-1.1)
- Achieved cost function error level corresponds to uniform 200x200 nodes mesh (100 times more degrees of freedom)

Adaptation sensor convergence

- Adaptation sensor norm rises after 5 adapt. steps
- Reason for this behaviour not known at the moment to be investigated

- Interior: adaptation sensor converging towards even distribution
- Boundaries: increase in adaptation sensor values at some boundary nodes

Summary

Testing

Introduction

Mesh adaptation and geometric multigric

Testing

R-refinement

Summary

Summary

Conclusion / Future work

Summary:

- 1. The manufactured solution tests shows that the proposed method is estimating truncation error correctly.
- 2. When using geometric multigrid, the truncation error estimation is almost free.
- 3. When running adjoint-based optimisation we can obtain a robust output-based adaptation sensor.
- 4. Question to answer: why adaptation sensor norm is not decreasing?

Future work:

- 1. Perform r-refinement with 2D-naca and 3D-FEV test cases
- 2. Perform h-refinement with 2D-naca and 3D-FEV test cases
- 3. Go towards multi-fidelity optimisation case (combine on-shot approach and mesh refinement)

Industrial partners:

University partners:

Acknowledgement

"This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no [317006]".

Research funded by the European Commission

