
Unsteady discrete adjoint on unstructured meshes
with source-transformed OpenMP 4.0

Jan Hückelheim∗

Jens-Dominik Müller

Queen Mary, University of London
School of Engineering and Material Science

6th. European Conference on Computational Fluid Dynamics
July 23, 2014

Our goal

• What we have:
• Unstructured, node based FV solver with geometric multigrid
• Dual time stepping: BDF2 outer, JT-KIRK1 implicit inner

iteration
• Adjoint generated with Tapenade2 (and some tricks)
• Snapshots stored at physical time steps, fixed-point loop (aka.

Christianson’s method) for pseudo steps

• What we want:
• Parallelise it with OpenMP

1S. Xu, D. Radford, M. Meyer, J-D. Müller: Stabilisation of discrete steady
adjoint solvers, submitted to Journal of Computational Physics

2L. Hascoët, V. Pascual: The Tapenade automatic differentiation tool:
Principles, model, and specification, ACM Transactions on Mathematical
Software Vol. 39 Issue 3, 2013

www.aboutflow.sems.qmul.ac.uk 2/18

This is not as easy as it sounds

• We are not in full control of the source code
• adjoint code made by AD
• no hand-differentiation: automatic differentiation to ensure

consistency

• High-level optimisations (replacing self-adjoint routines etc.)

• We accept preprocessing and complicated makefiles.
Necessary evil, to manage differentiation procedure

• We will not hand-fix the adjoint code: It has to be automatic
for consistency

www.aboutflow.sems.qmul.ac.uk 3/18

We spend our time on flux calculations

flux	

other	

Primal

• 1st order flux for system
matrix generated by
Tapenade in forward mode
from 2nd order fluxes

adj	

flux	

stack	

other	

Adjoint

• 2nd order reverse flux
generated by Tapenade in
reverse mode

• Additional cost: taping

www.aboutflow.sems.qmul.ac.uk 4/18

All fluxes have the same structure

ur

r

r

r

foreach edge do
i , j ← connectivity(edge);
coeff ← calc(statei ,j);
flux ← f (coeff , statei ,j);
resi ,j ← resi ,j + flux ;

end

• Iterate over all edges

• Assemble node residual, assemble system matrix

• Update node values (explicit or system solve)

www.aboutflow.sems.qmul.ac.uk 5/18

We can’t simply do this in parallel

r
u

u

u

u

u

!$OMP PARALLEL
foreach edge do

i , j ← connectivity(edge);
coeff ← calc(statei ,j);
flux ← f (coeff , statei ,j);
resi ,j ← resi ,j + flux ;

end

• Conflicting writes have to be avoided

www.aboutflow.sems.qmul.ac.uk 6/18

Avoiding write conflicts with colouring

foreach colour do
!$OMP PARALLEL
foreach edge in colour do

i , j ← connectivity(edge);
coeff ← calc(statei ,j);
flux ← f (coeff , statei ,j);
resi ,j ← resi ,j + flux ;

end

end

• Solution: group the edges (colour) so that we can run parallel
within each colour3.

3Vectorizing Unstructured Mesh Computations for Many-core Architectures
I. Z. Reguly, E. Laszlo, G. R. Mudalige, M. B. Giles, Proceedings of
Programming Models and Applications on Multicores and Manycores, 2014

www.aboutflow.sems.qmul.ac.uk 7/18

This also works in reverse

foreach colour do
!$OMP PARALLEL
foreach edge in colour do

i , j ← connectivity(edge);
fluxb ← resbi ,j ;
cvbi ,j , coeffb ← fb(fluxb)
cvbi ,j+← calcb(coeff , coeffb);

end

end

• We can use the same colouring scheme for the reverse flux

• Note the nonlinear term calcb. We need coeff , so we need to
store this in primal and restore it in reverse

www.aboutflow.sems.qmul.ac.uk 8/18

This also works in reverse

foreach colour do
!$OMP PARALLEL
foreach edge in colour do

i , j ← connectivity(edge);
fluxb ← resbi ,j ;
cvbi ,j , coeffb ← fb(fluxb)
cvbi ,j+← calcb(coeff , coeffb);

end

end

• We can use the same colouring scheme for the reverse flux

• Note the nonlinear term calcb. We need coeff , so we need to
store this in primal and restore it in reverse

www.aboutflow.sems.qmul.ac.uk 8/18

There are some technical problems

1. Tapenade does not know OpenMP Solution: Hide pragmas

2. AD Colour loop is less efficient Solution: Hide colour loop

3. Push/pop: Storage mechanism not thread-safe. Solution:
Implement thread-safe stack, reroute push/pop calls

4. False sharing: Writes to shared variables are slow if within the
cache line of another thread. Introduce local variables to
reduce global writes. Advantage of source transformation:
We can spot (and fix) problems like this!

www.aboutflow.sems.qmul.ac.uk 9/18

There are some technical problems

1. Tapenade does not know OpenMP Solution: Hide pragmas

2. AD Colour loop is less efficient Solution: Hide colour loop

3. Push/pop: Storage mechanism not thread-safe. Solution:
Implement thread-safe stack, reroute push/pop calls

4. False sharing: Writes to shared variables are slow if within the
cache line of another thread. Introduce local variables to
reduce global writes.

Advantage of source transformation:
We can spot (and fix) problems like this!

www.aboutflow.sems.qmul.ac.uk 9/18

There are some technical problems

1. Tapenade does not know OpenMP Solution: Hide pragmas

2. AD Colour loop is less efficient Solution: Hide colour loop

3. Push/pop: Storage mechanism not thread-safe. Solution:
Implement thread-safe stack, reroute push/pop calls

4. False sharing: Writes to shared variables are slow if within the
cache line of another thread. Introduce local variables to
reduce global writes. Advantage of source transformation:
We can spot (and fix) problems like this!

www.aboutflow.sems.qmul.ac.uk 9/18

There are harder problems

1. Even if OpenMP supported (TAF): Tool can not know
colouring, must assume write conflicts. Correct, but slow

2. Additional temporary variables in adjoint (temp1, temp2...)
private or shared? User must understand Tapenade output

3. Danger if Tapenade changes naming of temporary variables?
It will break our code (or introduce data races)

4. Poor scalability due to Taping ⇒ more details on the
following slides

www.aboutflow.sems.qmul.ac.uk 10/18

A way to understand performance limits and bottlenecks

• Roofline model4: Show performance bottlenecks for a given
code on a given platform

• Peak performance: Data sheet of processor/GPU/XeonPhi

• Memory bandwidth: customised STREAM5 benchmark

• Arithmetic intensity:
• FLOP: Soft-float + profiler, operator overloading with

counter, count operations in source code → over-estimate
arithmetic intensity

• Byte: Assume that every iteration stays inside cache →
over-estimate arithmetic intensity

4W. Samuel: Roofline: An Insightful Visual Performance Model for
Floating-Point Programs and Multicore Architectures, Lawrence Berkeley
National Laboratory, 2009

5J. D. McCalpin: Memory Bandwidth and Machine Balance in Current High
Performance Computers, IEEE Computer Society, 1995

www.aboutflow.sems.qmul.ac.uk 11/18

A way to understand performance limits and bottlenecks

• Roofline model4: Show performance bottlenecks for a given
code on a given platform

• Peak performance: Data sheet of processor/GPU/XeonPhi

• Memory bandwidth: customised STREAM5 benchmark

• Arithmetic intensity:
• FLOP: Soft-float + profiler, operator overloading with

counter, count operations in source code → over-estimate
arithmetic intensity

• Byte: Assume that every iteration stays inside cache →
over-estimate arithmetic intensity

4W. Samuel: Roofline: An Insightful Visual Performance Model for
Floating-Point Programs and Multicore Architectures, Lawrence Berkeley
National Laboratory, 2009

5J. D. McCalpin: Memory Bandwidth and Machine Balance in Current High
Performance Computers, IEEE Computer Society, 1995

www.aboutflow.sems.qmul.ac.uk 11/18

A way to understand performance limits and bottlenecks

• Roofline model4: Show performance bottlenecks for a given
code on a given platform

• Peak performance: Data sheet of processor/GPU/XeonPhi

• Memory bandwidth: customised STREAM5 benchmark

• Arithmetic intensity:
• FLOP: Soft-float + profiler, operator overloading with

counter, count operations in source code → over-estimate
arithmetic intensity

• Byte: Assume that every iteration stays inside cache →
over-estimate arithmetic intensity

4W. Samuel: Roofline: An Insightful Visual Performance Model for
Floating-Point Programs and Multicore Architectures, Lawrence Berkeley
National Laboratory, 2009

5J. D. McCalpin: Memory Bandwidth and Machine Balance in Current High
Performance Computers, IEEE Computer Society, 1995

www.aboutflow.sems.qmul.ac.uk 11/18

Roofline model: flux (primal)

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

0.0001 0.001 0.01 0.1 1 10 100 1000

p
er

fo
rm

a
n

ce
(F

L
O

P
/

s)

arithmetic intensity (FLOP/Byte)

mic
str

eam
memory

bandwidth

cp
u str

eam
memory

bandwidth

non-alig
ned memory

bandwidth

cpu serial

cpu, no simd

cpu, no fma
cpu, peak

mic, peak
mic, no fma

mic, no simd

mic, serial

flux
16 threads

flux
serial

www.aboutflow.sems.qmul.ac.uk 12/18

Two ways to compute reverse

foreach edge do
coeff ← calc(state);
store(coeff);

end
foreach edge do

restore(coeff);
stateb+← calcb(coeff , coeffb);

end

foreach edge do
coeff ← calc(state);
store(coeff);
restore(coeff);
stateb+← calcb(coeff , coeffb);

end

0	
 1	
 2	
 3	
 4	
 5	
 6	

M
em

or
y	

(n
or
m
al
is
ed

)	

Edge	
 itera3on	

Cache	
 size	

Naive	

AD	
 II-­‐LOOP	

www.aboutflow.sems.qmul.ac.uk 13/18

Roofline model: flux (primal, naive adjoint, AD-II adjoint)

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

0.0001 0.001 0.01 0.1 1 10 100 1000

p
er

fo
rm

a
n

ce
(F

L
O

P
/

s)

arithmetic intensity (FLOP/Byte)

mi
c s
tre
am

me
mo

ry
ba
nd
wi
dt
h

cp
u s
tre
am

me
mo

ry
ba
nd
wi
dt
h

no
n-a

lig
ne
d m

em
or
y b

an
dw
idt
h

cpu serial

cpu, no simd

cpu, no fma
cpu, peak

mic, peak
mic, no fma

mic, no simd

mic, serial

primalAD-II

naive
reverse

www.aboutflow.sems.qmul.ac.uk 14/18

It scales well (on 2 x Xeon E5-2660)

1	

2	

4	

8	

16	

1	
 2	
 4	
 8	
 16	

op)mum	

flux_b	

flux	

• Scaling on the CPU is OK (considering the non-cached access)

www.aboutflow.sems.qmul.ac.uk 15/18

Scaling is worse on XeonPhi 5110P

1	

2	

4	

8	

16	

32	

64	

128	

256	

1	
 4	
 16	
 64	
 256	

op+mum	

flux_b	

flux	

• Performance on XeonPhi is not great6 7 (even Intel says so8)
6T. Cramer, D. Schmidl, M. Klemm, D. an Mey: Programming on

Intel R©Xeon PhiTMCoprocessors: An Early Performance Comparison, RWTH
Aachen University, 2012

7Vectorizing Unstructured Mesh Computations for Many-core Architectures
I. Z. Reguly, E. Laszlo, G. R. Mudalige, M. B. Giles, Proceedings of
Programming Models and Applications on Multicores and Manycores, 2014

8https://software.intel.com/en-us/articles/running-minife-on-intel-xeon-phi-
coprocessors

www.aboutflow.sems.qmul.ac.uk 16/18

Conclusion, future work

• OpenMP works well for source-transformed unstructured
solvers (in principal), with some technical issues

• For more speed, we need to rethink the colouring: Apply
colouring to larger patches to preserve some cache efficiency
and allow data reusage

• XeonPhi alone is not promising: Bottlenecks similar to CPU

• More promising: Hybrid approach: OpenMP on CPU,
OpenMP on XeonPhi, MPI in between

• A robust way that will not break with the next Tapenade
update needs to be found

www.aboutflow.sems.qmul.ac.uk 17/18

Acknowledgement

This project has received funding from the European Union’s
Seventh Framework Programme for research, technological
development and demonstration under grant agreement no
[317006]
This research utilised Queen Mary’s MidPlus computational
facilities, supported by QMUL Research-IT and funded by EPSRC
grant EP/K000128/1.

www.aboutflow.sems.qmul.ac.uk 18/18

