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Our goal

• What we have:
• Unstructured, node based FV solver with geometric multigrid
• Dual time stepping: BDF2 outer, JT-KIRK1 implicit inner

iteration
• Adjoint generated with Tapenade2 (and some tricks)
• Snapshots stored at physical time steps, fixed-point loop (aka.

Christianson’s method) for pseudo steps

• What we want:
• Parallelise it with OpenMP

1S. Xu, D. Radford, M. Meyer, J-D. Müller: Stabilisation of discrete steady
adjoint solvers, submitted to Journal of Computational Physics

2L. Hascoët, V. Pascual: The Tapenade automatic differentiation tool:
Principles, model, and specification, ACM Transactions on Mathematical
Software Vol. 39 Issue 3, 2013
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This is not as easy as it sounds

• We are not in full control of the source code
• adjoint code made by AD
• no hand-differentiation: automatic differentiation to ensure

consistency

• High-level optimisations (replacing self-adjoint routines etc.)

• We accept preprocessing and complicated makefiles.
Necessary evil, to manage differentiation procedure

• We will not hand-fix the adjoint code: It has to be automatic
for consistency
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We spend our time on flux calculations
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Adjoint

• 2nd order reverse flux
generated by Tapenade in
reverse mode

• Additional cost: taping
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All fluxes have the same structure
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r
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foreach edge do
i , j ← connectivity(edge);
coeff ← calc(statei ,j);
flux ← f (coeff , statei ,j);
resi ,j ← resi ,j + flux ;

end

• Iterate over all edges

• Assemble node residual, assemble system matrix

• Update node values (explicit or system solve)
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We can’t simply do this in parallel
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!$OMP PARALLEL
foreach edge do

i , j ← connectivity(edge);
coeff ← calc(statei ,j);
flux ← f (coeff , statei ,j);
resi ,j ← resi ,j + flux ;

end

• Conflicting writes have to be avoided
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Avoiding write conflicts with colouring

foreach colour do
!$OMP PARALLEL
foreach edge in colour do

i , j ← connectivity(edge);
coeff ← calc(statei ,j);
flux ← f (coeff , statei ,j);
resi ,j ← resi ,j + flux ;

end

end

• Solution: group the edges (colour) so that we can run parallel
within each colour3.

3Vectorizing Unstructured Mesh Computations for Many-core Architectures
I. Z. Reguly, E. Laszlo, G. R. Mudalige, M. B. Giles, Proceedings of
Programming Models and Applications on Multicores and Manycores, 2014
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This also works in reverse

foreach colour do
!$OMP PARALLEL
foreach edge in colour do

i , j ← connectivity(edge);
fluxb ← resbi ,j ;
cvbi ,j , coeffb ← fb(fluxb)
cvbi ,j+← calcb(coeff , coeffb);

end

end

• We can use the same colouring scheme for the reverse flux

• Note the nonlinear term calcb. We need coeff , so we need to
store this in primal and restore it in reverse
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There are some technical problems

1. Tapenade does not know OpenMP Solution: Hide pragmas

2. AD Colour loop is less efficient Solution: Hide colour loop

3. Push/pop: Storage mechanism not thread-safe. Solution:
Implement thread-safe stack, reroute push/pop calls

4. False sharing: Writes to shared variables are slow if within the
cache line of another thread. Introduce local variables to
reduce global writes. Advantage of source transformation:
We can spot (and fix) problems like this!
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There are harder problems

1. Even if OpenMP supported (TAF): Tool can not know
colouring, must assume write conflicts. Correct, but slow

2. Additional temporary variables in adjoint (temp1, temp2...)
private or shared? User must understand Tapenade output

3. Danger if Tapenade changes naming of temporary variables?
It will break our code (or introduce data races)

4. Poor scalability due to Taping ⇒ more details on the
following slides
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A way to understand performance limits and bottlenecks

• Roofline model4: Show performance bottlenecks for a given
code on a given platform

• Peak performance: Data sheet of processor/GPU/XeonPhi

• Memory bandwidth: customised STREAM5 benchmark

• Arithmetic intensity:
• FLOP: Soft-float + profiler, operator overloading with

counter, count operations in source code → over-estimate
arithmetic intensity

• Byte: Assume that every iteration stays inside cache →
over-estimate arithmetic intensity

4W. Samuel: Roofline: An Insightful Visual Performance Model for
Floating-Point Programs and Multicore Architectures, Lawrence Berkeley
National Laboratory, 2009

5J. D. McCalpin: Memory Bandwidth and Machine Balance in Current High
Performance Computers, IEEE Computer Society, 1995
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Roofline model: flux (primal)
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Two ways to compute reverse

foreach edge do
coeff ← calc(state);
store(coeff );

end
foreach edge do

restore(coeff );
stateb+← calcb(coeff , coeffb);

end

foreach edge do
coeff ← calc(state);
store(coeff );
restore(coeff );
stateb+← calcb(coeff , coeffb);

end
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Roofline model: flux (primal, naive adjoint, AD-II adjoint)
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It scales well (on 2 x Xeon E5-2660)
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• Scaling on the CPU is OK (considering the non-cached access)
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Scaling is worse on XeonPhi 5110P
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• Performance on XeonPhi is not great6 7 (even Intel says so8)
6T. Cramer, D. Schmidl, M. Klemm, D. an Mey: Programming on

Intel R©Xeon PhiTMCoprocessors: An Early Performance Comparison, RWTH
Aachen University, 2012

7Vectorizing Unstructured Mesh Computations for Many-core Architectures
I. Z. Reguly, E. Laszlo, G. R. Mudalige, M. B. Giles, Proceedings of
Programming Models and Applications on Multicores and Manycores, 2014

8https://software.intel.com/en-us/articles/running-minife-on-intel-xeon-phi-
coprocessors
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Conclusion, future work

• OpenMP works well for source-transformed unstructured
solvers (in principal), with some technical issues

• For more speed, we need to rethink the colouring: Apply
colouring to larger patches to preserve some cache efficiency
and allow data reusage

• XeonPhi alone is not promising: Bottlenecks similar to CPU

• More promising: Hybrid approach: OpenMP on CPU,
OpenMP on XeonPhi, MPI in between

• A robust way that will not break with the next Tapenade
update needs to be found
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