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Ingredients for mesh adaptation

Sensor: Estimates local error of the discretisation. Ideally
should be isotropic: in which direction do we need to
refine or coarsen the mesh.

Weighting: Weight the local errors with their effect on a goal
function, i.e. the adjoint.

Mesh modification: How to change the mesh? And related
components such as multigrid levels?

Error correction: Rather than refining the mesh, we can instead
use the estimated error correct the linear error in the
goal function. And refine only for the
non-linear/non-computable part.
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Contents
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Residual-based error estimation

Alternative approaches for finite volume error estimation
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How run on the adapted mesh
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Commonly used types of sensors for finite volume methods

Truncation-error: Use simple Taylor analysis to link errors to first
or second gradients in the solution.

Residual: Evaluate the residual on a shifted control-volume,
e.g. the element in cell-vertex or finite element
methods.

Artificial viscosity: Evaluate the magnitude of A.V. by comparing
control volume residuals with and without A.V.

Sub-division: Locally refine the mesh and linearly interpolate the
solution, evaluate the residual on the refined grid.
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Truncation error estimation
• Gradient- or Hessian-based error estimators assume the error

behaves as simple Taylor expansion terms that are truncated:

∂u

∂x

∣∣∣∣
bkwd

=
ui − ui−1

h
=
∂u

∂x
+ h

∂2u

∂x2
+ O(h2)

• Essentially analyses the discretisation in finite difference
formulation, difficult to compute for higher-order finite volume
schemes on unstructured grids.

• The actual truncation error depends on much more than the
spatial gradients. Which variable?

• A mapping would be needed from errors in the primitive
variables to residuals to allow adjoint weighting:

∆J =
∂J

∂u
∆u =

∂J

∂R

∂R

∂u
∆u = vT

∂R

∂u
∆u
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Residual-based error estimation

• In finite element methods the mass matrix is not diagonalised
(“mass-lumped”) which links nodal and element residuals.
This provides the Galerkin orthogonality: error and test
functions are orthogonal.

• The residual evaluated at the node is driven to zero by
time-stepping, but will typically not be zero over other shifted
contours, e.g. the element.

• The residual error over the shifted integral converges as well,
due to Galerkin orthogonality, but not at the same rate as at
the node. It can hence be used formally to estimate the error.

• Weight this local residual with the adjoint.

• Error analysis in finite elements is well-developed, can be
formalised well for linear problems.
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Residual-based error estimation in h-p finite elements

flow sensor: goal-oriented
vorticity residual (Drag)

(Source: Becker, Rannacher: Acta Numerica, 2001)
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Application to finite volumes
• Extension to finite volumes: in node-centred discretisations

evaluate the residual over the cell/element without any
artificial viscosity terms (e.g. a central scheme), use the
magnitude of this residual as a sensor.

RNode = 0 RCell 6= 0
• Issue: super-convergence/noise. The FV does not use a mass

matrix. Chequer-board modes in the cell residual cancel out
at the nodes, the discretisation is transparent to these modes,
they are not damped.
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Adjoint-weighted residual adaptation in finite volumes

• Evaluate the cell-based residual RC (uh), e.g. Euler Eq.:

R(u) ≡ ∂F (u)

∂x
+
∂G (u)

∂y
= 0

Residual error on N-noded element:

RCell =

∫∫
T
∇·(Fh,Gh) dA =

∫
∂T

(Fh,Gh) · n ds

=
N∑

k=1

(Fh,Gh)k · nk ∆sk

• and weight with the cell-averaged adjoint v̄ :

δJCell =

∫∫
Cell

vTh R(uh) dA ≈ vh
T

∫∫
Cell

R(uh) dA. = vTRCell
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Example: subsonic aerofoil in inviscid flow

NACA 0012, Ma=0.4, α = 2◦

initial grid Mach, initial Mach, 5 levels
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Residual sensor
Mass flux residual, NACA 0012, Ma=0.4, α = 2◦

no smoothing 1 gather-scatter step
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Regularising element-based residual indicators

gather nodal residual: RNode
j =

∑
Cells

1

3
RCell
i

scatter to interpolate on triangle: Rtri
i =

∑
Nodes

Aj

Ai
Rnode
j

Ti
n

j
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Subsonic Airfoil: Adjoint Solution for Lift

mass flux v-velocity
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Smoothing |v ||f |

NACA 0012, Ma=0.4, α = 2◦

0 1 30 g-s steps
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Sensors Tested

|∆p| 1st differences of pressure along edges
|f | unweighted residual
|v ||f | adjoint weighted residual, 1 gather-scatter
|v ||f |, 30 g-s adjoint weighted residual, 30 gather-scatter

de-refinement and refinement

either one mean deviation below/above the average
or bottom 10%, top 30%
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Example: subsonic aerofoil in inviscid flow

NACA 0012, Ma=0.4, α = 2◦, 1st level

|∆p| |f | |v ||f | |v ||f |, 30 g-s
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Example: subsonic aerofoil in inviscid flow

NACA 0012, Ma=0.4, α = 2◦, 5th level

|∆p| |f | |v ||f | |v ||f |, 30 g-s
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Subsonic Airfoil: lift vs. h2

0 2 4 6

x 10
−4

0.24

0.245

0.25

0.255

0.26

0.265

0.27

1./elements

c
L

|v|.|f|        
|v|.|f|, 30 g−s
|f|            

|∆p|      

full           
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Example: transonic aerofoil in inviscid flow

NACA 0012, Ma=0.8, α = 1.25◦, 5/9 levels, pressure-sensor
HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0451 to     1.3359                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0053 to     1.3857                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0053 to     1.3895                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0182 to     1.3875                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0030 to     1.3841                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0053 to     1.3857                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0053 to     1.3895                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0182 to     1.3875                  

ini grid/full ref |∆p| |∆p|, 9 lvls. |∆p|, 30% ref
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Example: transonic aerofoil in inviscid flow

NACA 0012, Ma=0.8, α = 1.25◦, 5/9 levels, residual sensors
HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0052 to     1.3834                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0217 to     1.4096                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0156 to     1.3856                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0602 to     1.3855                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0052 to     1.3834                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0217 to     1.4096                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0156 to     1.3856                  

HYDRA                                                                           

Planar Cut @ ( -0.38, -0.50, -0.50)( -0.38,  1.19, -0.50)(  1.32, -0.50, -0.50) 

Mach                             from     0.0602 to     1.3855                  

|v ||f | |v ||f |, 9 lvls. |v ||f |, 30% |v ||f |, 10 g-s
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Transonic Airfoil: lift vs. h2
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Transonic Airfoil: lift vs. h2
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Residual in the shock

0.60 0.62 0.64 0.66
−4.0

0.0

4.0

×10−3 lvl 3
lvl 4
lvl 5

0.60 0.62 0.64 0.66
−4.0

0.0

4.0

×10−3 0 g-s
3 g-s
10 g-s

0 g-s; levels 3, 4, 5 0, 3, 10 g-s; level 3
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Refining for shocks

•• O(1) error in flux at shock produces large residuals

• flux conservation means these sum to zero, approximately

• continuity of adjoint variables means their effects on
functional also cancel, to leading order

• without limiting, too much adaptation goes into stronger
shock

• smoothing the residual helps, but too much loses the
adaptation of the weaker shock

• limiting the number of levels does a good job, but is not a
very satisfactory solution
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Error estimation using local refinement

• Venditti, Darmofal (JCP, 2002): Estimate the error by
evaluating the residual of the solution of the current grid
interpolated onto a subdivided grid.

• Correct the goal function with the “computable” correction,
no solution on the refined mesh needed.

• Adapt the mesh to minimise the error in the computable
correction (ECC) due to non-linearity, which can be
approximated as the difference between the inner products of

• adjoint solution-error and primal residual and
• adjoint residual and the primal solution-error.
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correction (ECC) due to non-linearity, which can be
approximated as the difference between the inner products of

• adjoint solution-error and primal residual and
• adjoint residual and the primal solution-error.
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Application of local refinement sensor

NACA 0012
Ma=0.95

pressure
sensor

Source: Venditti, Darmofal, JCP 2002
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Application of local refinement sensor

ECC sensor
e=0.01

ECC sensor
e=0.0005

Source: Venditti, Darmofal, JCP 2002
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Conservation-based estimation/Entropy variables

• Principle: compressible FV discretisations conserve the
integrals of the continuity and momentum equations, but not
entropy s

• Observation (Fidkowski, Roe, 2010): the flow solution in
entropy variables is identical to the adjoint for entropy
production of the Euler eq.

• Viscous effects and shocks will reduce ptot and s, but these
contributions can be computed and subtracted from the total
entropy production to obtain numerical entropy.

• Idea: use the numerical s as a sensor.
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Adaptation with entropy variables

NACA 0012,
Ma=0.8, α = 1.25◦

drag adjoint lift adjoint

residual entropy

Source: Fidkowski, Roe, SIAM J Comp, 2010
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Adaptation with entropy variables

Convergence of lift and drag errors with various adaptation sensors:

drag output lift output

Source: Fidkowski, Roe, SIAM J Comp, 2010
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Sensors based on Artificial Viscosity

• Dwight et al.: refinement is required where A.V. is high,
de-refinement is possible where the solution is captured
(nearly) exactly and A.V. is low.

• They use a JST scheme with scalar dissipation based on first
and third-order pressure differences, multiplied with
coefficients ε(2), ε(4).

• Use adjoint weighting to evaluate the sensitivity of the cost
function w.r.t the value of the coefficients ε.
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Application of sensor based on artificial viscosity

primal

sens.
to ε(2)

adjoint

sens.
to ε(4)

Source: Dwight, JCP, 2008
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Application of sensor based on artificial viscosity

subsonic
grad. sens.

subsonic
dissip. sens.

transonic
grad. sens.

transonic
dissip. sens.

Source: Dwight, JCP, 2008
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Adaptation with entropy variables

subs.
drag

trans.
drag

subs.
lift

trans.
lift

Source: Dwight, JCP, 2008
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Mesh adaptation methods

• Remeshing

• r -refinement

• p-refinement

• h-refinement
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r-refinement

• Equi-distribute the error in the mesh at constant cost:
• Concentrate mesh into zones of interest/high error,
• Coarsen mesh in zones of low error.

• If Topology is kept invariant: no change in data-structures.
Low overheads for unsteady cases. Often already implemented
in optimisation chains to respond to design changes.

• Mesh quality will degrade with aggressive mesh movent: can
be combined with mesh repair, e.g. edge- or face-swapping for
tetrahedra (MMG3D tool).
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r-refinement

Example of r -refinement to capture a pollutant plume.
Source: Garcia-Menendez et al., Atmosphere, 2011
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p-refinement

• Increase the order of accuracy of the scheme in regions of
smooth variation.

• Useful for finite-element and discontinuous Galerkin methods.
See later presentations by Prof. Fidkowski.

• Of limited use in F.V. methods since most practical FV
methods are limited to second-order accuracy.

• Needs to be combined with h or r -refinement to capture
discontinuous aspects of the solution.
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h-refinement

• global remeshing Majewski, Dobrzynski, Alauzet

• local remeshing
• Delaunay triangulation
• Mesh repair, edge/face swapping. Dobrzynski MMG3D, works

well for simplex meshes (tets in 3D)
• Optimisation-based smoothing Freitag, Gooch (Grumpp,

Mesquite)
• Prism layers need special treatment due to element type and

high aspect ratio.

• isotropic hierarchic refinement: ‘AMR’ using quad-trees on
Cartesian meshes is relatively straightforward, can be effective
for blast-type problems to track fronts. Difficulties with
anisotropic layers.
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Anisotropic hierarchic grid adaptation

• Effective hierarchic grid adaptation methods need to
• be able to operate on hybrid grids (tet, prism, pyramid, hex)
• allow anisotropic refinement,
• need to avoid propagation of mesh lines through the entire

mesh,
• preserve mesh quality,
• have local operations (geometric neighbourhood only) to

support parallel implementation.
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Anisotropic hierarchic grid adaptation: hip toolkit

Anisotropic hierarchic grid adaptation (Mueller, IJNMFD, 2002):

• Nodes are added on edges, faces or cells
• Searchable data-structure for adaptive edges of cells which

allows to communicate refinement of an edge to all
neighbouring elements.

• Nodes on faces are communicated with ’diagonal’ adaptive
edges

• Cell-centre nodes are known when an element is refined.

• Define a limited set of canonical refinement patterns (and
their rotations) that preserve element quality.

• Limit refinement differences between cells to at most 1 level

• Treat hanging nodes in a post-processing step, if needed.
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Adaptive edges

• Carry a mid-node

• Searchable by end- and mid-nodes

• are only removed if all surrounding elements are refined

• otherwise indicate a hanging node
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Examples of anisotropic refinement patterns

• One instance of the pattern is pre-defined

• Secondary information such as child to edge or child to face
information is computed from the child to node definition.

• All rotations are pre-computed and stored.
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Conservation through unique face tessellation

To compute a consistent conservative flux, the tessellation of the
cell faces at the refinement interface (level difference) needs to be
the same viewed from either side:

• In 3D tri and quad faces need to be considered

• Faces are rotated into a canonical position,

• Rules are defined for all possible canonical cases.
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Anisotropic cross-refinement

• Anisotropic refinement may switch direction at an interface,

• forcing isotropic refinement in that case is not an option, as it
would result in propagation of the costly isotropic refinement
through the mesh

• resolved by insertion of a ‘hanging node’ on both neighbour
faces.
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Adaptive edges on quadrilateral faces

Edges between mid-nodes carry the central node on the face and
force a unique tessellation.
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Anisotropic refinement algorithm

1. Evaluate the anisotropic sensor field on edges,

2. Determine thresholds for refinement.

3. Loop over all elements,

3.1 Flag all edges that have a sensor value above threshold,
3.2 Flag all edges that will have more than one level difference,
3.3 Find the smallest pattern that contains all flagged edges,
3.4 Mark the element with this refinement pattern,
3.5 Find/Create the adaptation edges for this pattern.

4. If new adaptation edges were created, goto 3,

5. Create the mid-nodes on the adaptation edges,

6. Create the children elements using those nodes,

7. Create boundary faces for the children.

8. Remove all adaptive edges that are not hanging.
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Example: Adaptation from Euler to Navier-Stokes grid
NACA 0012, Ma=0.8, α = 1.25◦, Re= 105, adapted using first
order velocity differences across edges.

level 0 level 2 level 4 level 6

52/62



Sensors Residual-based Sensors for F.V. Refinement Adaptive solvers Conclusions

Contents

Sensors: where to adapt?

Residual-based error estimation

Alternative approaches for finite volume error estimation

How to adapt

How run on the adapted mesh

Conclusions

53/62



Sensors Residual-based Sensors for F.V. Refinement Adaptive solvers Conclusions

Exactness of gradient and viscous operators

On a regular grid standard edge-based
gradient operators are exact.
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Exactness of gradient and viscous operators

• On a refined, irregular grid
edge-based gradient operators will
have large errors, worse for 2nd
derivatives.

• Efficient adaptation will need to
have linearly-exact operators that
can cope with such mesh
distortions.

• E.g. cell-based gradients in
vertex-centred schemes, or linearly
exact dissipations in cell-vertex
schemes.
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Multigrid: How to define levels?

Normal, nested multigrid
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Multigrid: How to define levels?

One level of refinement
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Multigrid: How to define levels?

ineffective

No multigrid coarsening in shaded areas, duplicated work
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Multigrid: How to define levels?

Redefining multigrid levels is costly, can be difficult may also
include duplicated work
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Multigrid: How to define levels?

Zonal multigrid (Mavriplis, 1995): only solve for adapted grid on
the adapted patch. Needs conservative interface, only loose
coupling may affect convergence rate.
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Re-coarsening vs. using adaptive hierarchy for multi-grid
Two levels of anisotropic refinement compared to two levels of
coarsening from the refined grid.HYDRA                                                                           

Planar Cut @ (  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05) 

Mach                             from     0.0000 to     0.7985                  

HYDRA                                                                           

Planar Cut @ (  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05) 

Mach                             from     0.0000 to     0.8291                  

HYDRA                                                                           

Planar Cut @ (  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05) 

Mach                             from     0.0000 to     0.8160                  

HYDRA                                                                           

Planar Cut @ (  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05) 

Mach                             from     0.0000 to     0.7985                  

HYDRA                                                                           

Planar Cut @ (  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05) 

Mach                             from     0.2250 to     1.2250                  

HYDRA                                                                           

Planar Cut @ (  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05) 

Mach                             from     0.2250 to     1.2250                  
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Two levels of anisotropic refinement compared to two levels of
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HYDRA                                                                           

Planar Cut @ (  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05) 

Mach                             from     0.0000 to     0.8291                  

HYDRA                                                                           
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Planar Cut @ (  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05) 

Mach                             from     0.0000 to     0.7985                  

HYDRA                                                                           

Planar Cut @ (  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05) 

Mach                             from     0.2250 to     1.2250                  

HYDRA                                                                           

Planar Cut @ (  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05)(  0.00,  0.00, -0.05) 

Mach                             from     0.2250 to     1.2250                  

• “Un-adapted” coarse grids are better for the near-field,
coarsening approach also coarsens the farfield.

• Both approaches need to be combined.
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Adaptation interfaces: hanging node treatment

Buffering: Tessellate the cell with
hanging nodes into
primitive elements,
some cases may need
insertion of a central
node.

Solver: Support hanging
nodes/polyhedral
elements in the
discretisation
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Hanging node treatment

Buffering:

+ No solver change needed.

- In 3D and very local refinement there may be more
buffer elements than refined elements.

- Poor element quality at the interface.

Solver treatment:

- Requires solver change.

+ Allows to define control volumes with better accuracy
and smoothness

+ No additional elements.
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Comparison of interface approaches

hanging
nodes,
linearly
transparent
dissipation

buffered:
50% more
cells,
10% more
CPU time
in 2D, 30%
in 3D. grid Mach Entropy
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Conclusions

• A variety of sensors is available for finite volume methods,

• Good sensors are expensive, but still don’t offer error bounds
for non-linear equations.

• Sensors need be anisotropic for efficiency.

• Sensors need to be adjoint-weighted for efficiency and
robustness.

• remeshing provides the best grids and has least impact on the
solver, but is costly, not suitable for unsteady adaptation.

• r -refinement can be part of a solution, suitable for unsteady,
but needs to be combined with other techniques for
enrichment.

• h-refinement can be local and effective for unsteady adapt.,
but has significant ramifications for the solver on grid
regularity and hanging nodes.
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