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MMG platform: overview

e MMG2D : 2d meshing/remeshing
o MMGS : surfacic remeshing
o MMGS3D : 3d remeshing

Developped by

e C. Dobrzynski (Bordeaux), C. Dapopny (Grenoble), P.
Frey (Paris), A. Froehly (Bordeaux)

e Distribution: https://github.com/MmgTools/mmg
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Useful tools for mesh adaptation
Drive the mesh process
Evaluate a mesh



Drive the mesh process

Generate a mesh suitable to numerical simulation

Uniform mesh Non-uniform mesh Non-uniform mesh

o Isotropic mesh : prescribed edge sizes

@ At each point, give the prescribed sizes



Drive the mesh process

Adapt the mesh to the numerical solution

Isotropic mesh Anisotropic mesh

@ According to an error estimator, prescribe a size map

e Anisotropic case: sizes + directions



Mesh adaptation background: metric specification

Metric definition
d X d symetric positive definite matrix:

M=RAR"

Edges orientation:
R = (vi w3 v3)

Sizes prescription:

A = dz’ag()\l , /\2 s )\3)

Isotropic case

0 A=Xo=A3
o ellipsoide = sphere



Anisotropic metric example

100 0 O
M = 0 10 O
0 0 10




Anisotropic metric example

Rotation of %:
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0 0
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Mesh adaptation background

o Length definition for an edge e:

1
lM(e)z/O VetM(t)edt

o Metric intersection:

M= MiN M,

o Metric interpolation:

M(P) = (tM(A)—% el _t)M(B)—%)

—k



Error estimators examples

Isotropic

@ Have a sensor (based on gradient variations of a quantity,
hessian variations...)

© Impose cell size or divide cell size in 2 if needed

Anisotropic

Interpolation error majoration on an element K '

9
lu=Thulleok < o5 max (e M(K) &),
where M(K') computed with the Hessian of u
and € an edge.

1
P. Frey and al., Comput. Methods Appl. Mech. Engrg., Vol. 194, Issues 48-49, 2005
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Local remeshing
Geometric mesh
Volumic remeshing
Coupling surface/volume mesh generation



Local remeshing

Principles

@ input : a mesh + (not mandatory) a size map

e modify iteratively the mesh

2 main requirements

o well describe the underlying geometry

@ be in agreement with the user-defined size map

Advantages

@ only one mesh in memory,
e mesh always valid,

@ in mesh adaptation process, very quick process.



Control the underlying geometry

Principles

@ input : a triangulated surface (no CAD)
e approximate the underlying geometry

o modify the mesh to control the geometric approximation

Tools

o surface models based on Bézier surface

o Hausdorff distance evaluation



Surface model: cubic surface

Parametric Bézier cubic surface
b; j 1 control points



Surface model: cubic surface

@ 3-order Bézier surface
° Y(u,v) €T,

3! S
o(u,v) = Z T (1 —u—v) o~ Ib; 5,
4,7€0..3 R




Surface model: control points

Triangle vertex (interpolate by the Bézier surface)
a0 =b3zpo al =0bozo a2="Dyoz3

Edge vertex
T,,: tangent plane at vertex a; defined by 7; and a;
o Hypothesis

@ Tangents at a; are onto Ty,
© Edges are curves with constant speed

e Example for by 1
@ projection of a; onto T,
© agba,10 = Sagin

Last control point

e Such as if a quadratic surface exists, it coincides



Surface model

@ Geometric elements identification (corners, edges...)

© Normal computation on each vertex P of the discrete
surface

ar xXn
n(P) = 2rop 0T X N1 avec Z ar=1
1S popar < nrll ™ 2

@ Construction of a local geometry :

o 3-order BéAzier surface
o Y(u,v) €T,

3! S
o(u,v) = Z i!j!k!(l —u—v) oty
4,5€0..3




Geometric mesh algorithm

Main steps

e Geometric elements identification (corners, edges...)

e Construction of a local geometry

Evaluation of the Haussdorff distance

Nodes insertions/deletions to control the geometry

Nodes relocations/edge swaps to improve the triangle
quality



Surfacic node relocation

Point relocation



Volumic remeshing

Principles

o drive by a user-defined size map

@ no geometric constraints

Tools

@ Nodes insertions
@ Nodes deletions
o Edge swaps

@ Nodes relocation



Node insertion by pattern

Point insertion by pattern.
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Delaunay triangulation:

@ Delaunay measurement:
d(P,Ok)

a(K7P): -

e Cavity characterization:

K €Cpiff (K, P) < 1.

Triangulation 7,




Delaunay triangulation:

o Delaunay measurement:
d(P,Ok)

a(K7P): -

e Cavity characterization:

K €Cpiff (K, P) < 1.
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Delaunay triangulation:

@ Delaunay measurement:
d(P
o, p) = 40K)
'K

e Cavity characterization:

K €Cpiff (K, P) < 1.



Delaunay triangulation:

o Delaunay measurement:

d(P,Ok)

a(K,P) = -

o Cavity characterization:
K eCp iff a(K,P) < 1.
@ Anisotropic extension:

K, P)p = EM(Z{OK) .



Node suppression

o Transform edge AB into vertex C.
Three possibilities:
@ Take C' = A,
© Take C = B,
@ Find a vertex C between A and B.

o Apply this operator if:
@ all tetra containing C are valid (positive volume and
admissible quality)
© new configuration has no big edges.
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Node relocation

@ Find a new position for P such as:
o all tet containing P’ have a better quality as the worst
containing P
o all edges from P’ have an admissible lenght
e Optimal position:
For all tet 7 in the ball of P, the optimal position P/ is

3 ——
1 PP,
PPt — = P J 1
; 3;1( +Z(ij)) (1)

P’ is found via a relaxation method as the barycenter of all
the computed P{*":

P = (1—wP+w Z P, (2)

where w is the relaxation parameter (between 0 et 1).



General algorithm

@ mesh surface analysis

@ geometric remeshing (control of the Hausdorff distance)

@ Edge length analysis (both internal and surfacic)

@ Mesh optimisation (edge swap, node relocation)

At the end : adapted mesh to a prescribed size map



Motivation III: our choices

Combine:
o simplicity of embedded techniques
o strength of mesh adaptation
Tools:

o level-set description of solid bodies : Sign Distance
Function (SDF)

@ anisotropic mesh adaptation

Mesh for IBM. Right : Naca0012 airfoil - Left : 2D
Complex Ice Shape
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How to locate the objects 7
@ Domain does not fit the obstacles
= need to know where is the inside and the outside
Definition: signed distance fonction
Considering a domain 2 C €21, delimited by a surface I :

d(z,T) if x € Q1 \ Qo

Sz, t) =2 0ifz €T (3)
- d(ac,F) if x ey

SDF on a mesh for a circle



How to impose boundary conditions ?

o With IBM solid wall BCs are taken into account differently
@ Penalization : account for the rigid solid (through the
governing equations) using a penalty term
o Idea: extend the velocity field inside the solid

0 0.5 1

u-velocity for NACA0012



About accuracy

o Penalty term active inside the solid only
= accuracy depends on the capture of the interface

@ Our proposition : mesh adaptation to improve accuracy of
the SDF

Characteristic function for a circle



About accuracy

@ Penalty term active inside the solid only
= accuracy depends on the capture of the interface

o Our proposition : mesh adaptation to improve accuracy of
the SDF

Characteristic function for a circle
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Physical problem

Full compressible Navier-Stokes equations:

{8tU+aa:'E:ax'Q (4)

p pu 0
U=| pu |, E=| pu®u+pld and G = iy
pe (pe +p)u mu+q

_ ou ou]t 20
withw = p ([8&:] + [%] -3 [% .'u,] E) the stress tensor.

Boundary conditions:
e inflow/outflow on the
outer boundary

e no-slip boundary on the
obstacles I'g::

’U,FSZ. = UFSi = ’wrsi =0
TF . = cte

St



Residual distribution schemes

overview
e 1 - Compute &7

e 2 - Distribute ®7 to each DoF of the triangle
Nodal Residual /T\\

A\
_ T //q’\\

o 3 - Gathering all the contributions of each triangle where ¢

belongs
Residual Scheme
%
>l ) =0 S

T3i



Resolution of the RDS scheme

@ The obtained RDS scheme

Sal -

T>i

@ is solved using a pseudo-iterative scheme

un+1 T

17 ol =0
At

ug given

(]

Implicit scheme is used such that 1/n >> 1.

e 17 — 10" in our steady simulations.



BCs inside penalty methods

@ Penalty source term to impose BCs

o Accuracy depends on the capture of the interface

e Our proposition : use mesh adaptation to improve
accuracy of the SDF

Characteristic function for a circle



Mesh adaptation background: metric specification
o d X d positive definite symmetric matrix:
M=RAR!

R prescribes the orientation of the edges
A prescribes the size
o Length definition for an edge e:

1
Ia(e) = / VetM(t)edt
0
@ Metric intersection:

M = My N M,




Mesh Adaptation : two criteria

@ Accurate capture of flow features.



Metric definition for good accuracy of level-set rrey ana a1

o Let’s € an error, hy, (resp. Amgz) the minimal (resp.
max.) length edge.

@ The following metric allows to control the error of an
isovalue:
1 A A
M = R diag <2,|1|,|2|> RT (8)
et e €
with R = (V®,v1,v9), (v1,v2) a basis of the tangent plane
to the boundary and A; eigenvalues of the Hessian of .

@ In order to control the 0 isovalue,

e V nodes close to I'g, prescribe M
e V other nodes, increase linearly h,,;, and € until h,,q.



Example of level-set mesh adaptation

<> S
RUESEESEE
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e
AN
SATAVAYAVAS VAV,

I IAYAVAYAVANANAVAVAVAN ;.
POOOTARIAANR

Vi
JAVAVAVAVAVAVAVAVAVAYAV)
OREORK R 7 NGB
L N A N
\VAVAVAAVAVAS - rAVAVAVAVAVAVAVARAVA S = i NS
A S ATAT AT e NS =

@ near the 0-level-set :

-hmax 0.06 -hmin 0.005 -eps 0.005
@ elsewhere : isotropic mesh
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Example of level-set mesh adaptation
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@ near the 0-level-set :

-hmax 0.06 -hmin 0.01 -eps 0.01

@ elsewhere : isotropic mesh
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Mesh adaptation

Goal : accurate solution with minimum degrees of freedom
(= decreasing CPU time).

i=0 (T0,S0)
Solution Interpolation
i+ 1« 1
(Tiv1,Si, M)
(i, Si)
Mesh generation
CFD solver
(Ti, Mi)
NO
C ? Metric computation
(Ti, Si)

YES




Mesh adaptation with penalization

o Laminar subsonic flow around Naca0012.

; no angle of attack

I

: Mach 0.5

)

@ Reynolds 5000

X-Axis

embedded (49 000 pts) and fitted (45 000 pts)

Initial mesh :



Mesh adaptation with penalization: leading and trailing edge

o physical adap parameter:
e =05¢—4; hypin = .107% hypas = 2
o interface adap parameter:

€ = hmin = 10_4; hmaz = 2

.05 0.10 0.15 0.20 0.50 1.oo
3-Ax -

Adapted mesh : embedded (101 000 pts) and fitted (85 000 pts)



Numerical results: Supersonic flow around a triangle *

120 h

-19.5 0.5 255

h=05 6=20deg, S=(05,1),
Re =5 x10% Prandtlnb = 0.72, M; =2, T,=3.

Penalized parameters inside the triangleu =0, T' =3

404 Boiron, G. Chiavassa, and R. Donat. Computers and Fluids, 2009.



Numerical results: Supersonic flow around a triangle

o Initial mesh : 30407 nodes and 60730 triangles

o Interface adaptation parameters :
€ = hmin = 1.107% hppar = 2




Numerical results: Supersonic flow around a triangle

o Initial mesh : 30407 nodes and 60730 triangles

e Adaptation parameters : € = hpin = 1.107%; hppar = 2




Numerical results: Supersonic flow around a triangle

o Initial mesh : 30407 nodes and 60730 triangles

e Adaptation parameters : € = hpin = 1.107%; hpaz =

o after 3 cycles of adaptation : 49648 nodes and 99184
triangles




Rotation of a rectangular block

A

0 isoline, from left to right : t =0, ¢t =1.64, t = 2.71




Rotation of a rectangular block: mass loss




