
1/88

Unstructured mesh adaptation
applied to CFD simulation.

Cécile Dobrzynski?

? IMB - Université de Bordeaux and
Team Cardamom - INRIA Bordeaux Sud-Ouest, Bordeaux, France

in collab. with R. Abgrall, H. Beaugendre, C. Dapogny,
P. Frey, A. Froehly, L. Nouveau, M. Ricchiuto

2/88

Guideline

Introduction

Useful tools for mesh adaptation

Local remeshing

Generation of a computational mesh from an implicitly defined
domain

Anisotropic mesh adaptation for immersed boundary method

3/88

Mesh adaptation applications

4/88

MMG platform: overview

MMG2D : 2d meshing/remeshing

MMGS : surfacic remeshing

MMG3D : 3d remeshing

Developped by

C. Dobrzynski (Bordeaux), C. Dapopny (Grenoble), P.
Frey (Paris), A. Froehly (Bordeaux)

Distribution: https://github.com/MmgTools/mmg

5/88

Guideline

Introduction

Useful tools for mesh adaptation
Drive the mesh process
Evaluate a mesh

Local remeshing

Generation of a computational mesh from an implicitly defined
domain

Anisotropic mesh adaptation for immersed boundary method

6/88

Drive the mesh process

Generate a mesh suitable to numerical simulation

Uniform mesh Non-uniform mesh Non-uniform mesh

Isotropic mesh : prescribed edge sizes

At each point, give the prescribed sizes

7/88

Drive the mesh process

Adapt the mesh to the numerical solution

Isotropic mesh Anisotropic mesh

According to an error estimator, prescribe a size map

Anisotropic case: sizes + directions

8/88

Mesh adaptation background: metric specification

Metric definition
d× d symetric positive definite matrix:

M = R Λ R−1

Edges orientation:
R = (~v1 ~v2 ~v3)

Sizes prescription:
Λ = diag(λ1 , λ2 , λ3)

1√
λ1

1√
λ2

!v1

!v2
!v3

1√
λ3

Isotropic case

λ1=λ2=λ3

ellipsoide ⇒ sphere

Ex: size prescription = 0.1

M =

100 0 0
0 100 0
0 0 100

9/88

Anisotropic metric example

M =

100 0 0
0 10 0
0 0 10

10/88

Anisotropic metric example

Rotation of π
4
:

M =

55 0 −45
0 10 0
0 0 45

11/88

Mesh adaptation background

Length definition for an edge e:

lM (e) =

∫ 1

0

√
etM(t)e dt

Metric intersection:

M =M1 ∩M2

Metric interpolation:

M(P) =
(
tM(A)−

1
k + (1− t)M(B)−

1
k

)−k

12/88

Error estimators examples

Isotropic

1 Have a sensor (based on gradient variations of a quantity,
hessian variations...)

2 Impose cell size or divide cell size in 2 if needed

Anisotropic

Interpolation error majoration on an element K 1:

‖u−Πhu ‖∞,K ≤ 9

32
max
e∈EK

〈~e,M(K)~e〉 ,

where M(K) computed with the Hessian of u
and ~e an edge.

1
P. Frey and al., Comput. Methods Appl. Mech. Engrg., Vol. 194, Issues 48-49, 2005

16/88

Guideline

Introduction

Useful tools for mesh adaptation

Local remeshing
Geometric mesh
Volumic remeshing
Coupling surface/volume mesh generation

Generation of a computational mesh from an implicitly defined
domain

Anisotropic mesh adaptation for immersed boundary method

17/88

Local remeshing

Principles

input : a mesh + (not mandatory) a size map

modify iteratively the mesh

2 main requirements

well describe the underlying geometry

be in agreement with the user-defined size map

Advantages

only one mesh in memory,

mesh always valid,

in mesh adaptation process, very quick process.

18/88

Control the underlying geometry

Principles

input : a triangulated surface (no CAD)

approximate the underlying geometry

modify the mesh to control the geometric approximation

Tools

surface models based on Bézier surface

Hausdorff distance evaluation

19/88

Surface model: cubic surface

In the following, we make the assumption that each triangle T = (a0 a1 a2) 2 ST accounts for a smooth
portion of S, whose boundaries may be ridge curves, reference curves, etc... The portion of @⌦ associated

to T is modeled as a cubic piece of surface �(bT), where

bT :=
�
(u, v) 2 R2, | u � 0, v � 0, w := 1 � u � v � 0

stands for the reference triangle in the plane, and each component of � : bT ! R3 is a polynomial of total

degree 3 in two variables u, v 2 bT . It will turn out convenient to write � under the form of a Bézier cubic
polynomial [18]:

(2) 8(u, v) 2 bT , �(u, v) =
X

i,j,k2{0,...,3}
i+j+k=3

3!

i!j!k!
wiujvk bi,j,k,

where the bi,j,k 2 R3 are control points, yet to be specified. See figure 1 for an illustration.

bT

� a0 = b3,0,0

b1,2,0

a1 = b0,3,0

a2 = b0,0,3

b1,0,2 b2,0,1 b2,1,0

b0,1,2

b0,2,1
b1,1,1

•
•

•• • •
•

•
• •

S
T

(0, 0)

(0, 1)

(1, 0)

Figure 1. A piece of parametric Bézier cubic surface, associated to triangle T , with control
points bi,j,k.

We also denote as �0, �1, �2 the boundary curves of �(bT):

8t 2 [0, 1], �0(t) = �(1 � t, t), �1(t) = �(0, t), �2(t) = �(t, 0).

The choice of the control points bi,j,k is dictated by the geometrical features of @⌦ we approximated in
section 3.1, or by other requirements we may want our local geometry to meet.

3.2.1. Choice of the three ‘vertex’ control points. The natural requirement that ST should interpolate @⌦

prompts the choice of the three vertices of T as the three vertices of �(bT), that is:

b3,0,0 = a0, b0,3,0 = a1, and b0,0,3 = a2.

3.2.2. Choice of the six ‘curve’ control points. We required �(bT) should be a smooth piece of surface. In

particular, �(bT) enjoys a tangent plane Tai
S at each vertex ai, whose normal vector ni should match the

reconstructed geometric information at ai.
On the other hand, it is well-known (see [18] for instance) that the whole geometry of Bézier curves and

surfaces can be expressed in terms of their control points; for instance, the tangent vector at a0 to the
boundary curve �2 is 3(b2,1,0 � b3,0,0), and the tangent at a0 to �1 is 3(b2,0,1 � b3,0,0).

Hence, the tangent plane to �(bT) at a0 is the expected tangent plane Ta0
@⌦ provided b2,1,0 and b2,0,1 are

chosen in such a way that (b2,1,0 � a0) and (b2,0,1 � a0) are non colinear, and both orthogonal to n0. Similar
relations hold when it comes to a1, a2 and control points b0,2,1, b1,2,0, b1,0,2 and b0,1,2.

This still allows some latitude as for the choice of these coe�cients. In [43], the authors propose to take,
for instance, b2,1,0 as the orthogonal projection over Ta0

@⌦ of point a0 + (a1 � a0)/3. Instead of this, we
5

Parametric Bézier cubic surface
bi,j,k control points

20/88

Surface model: cubic surface

In the following, we make the assumption that each triangle T = (a0 a1 a2) 2 ST accounts for a smooth
portion of S, whose boundaries may be ridge curves, reference curves, etc... The portion of @⌦ associated

to T is modeled as a cubic piece of surface �(bT), where

bT :=
�
(u, v) 2 R2, | u � 0, v � 0, w := 1 � u � v � 0

stands for the reference triangle in the plane, and each component of � : bT ! R3 is a polynomial of total

degree 3 in two variables u, v 2 bT . It will turn out convenient to write � under the form of a Bézier cubic
polynomial [18]:

(2) 8(u, v) 2 bT , �(u, v) =
X

i,j,k2{0,...,3}
i+j+k=3

3!

i!j!k!
wiujvk bi,j,k,

where the bi,j,k 2 R3 are control points, yet to be specified. See figure 1 for an illustration.

bT

� a0 = b3,0,0

b1,2,0

a1 = b0,3,0

a2 = b0,0,3

b1,0,2 b2,0,1 b2,1,0

b0,1,2

b0,2,1
b1,1,1

•
•

•• • •
•

•
• •

S
T

(0, 0)

(0, 1)

(1, 0)

Figure 1. A piece of parametric Bézier cubic surface, associated to triangle T , with control
points bi,j,k.

We also denote as �0, �1, �2 the boundary curves of �(bT):

8t 2 [0, 1], �0(t) = �(1 � t, t), �1(t) = �(0, t), �2(t) = �(t, 0).

The choice of the control points bi,j,k is dictated by the geometrical features of @⌦ we approximated in
section 3.1, or by other requirements we may want our local geometry to meet.

3.2.1. Choice of the three ‘vertex’ control points. The natural requirement that ST should interpolate @⌦

prompts the choice of the three vertices of T as the three vertices of �(bT), that is:

b3,0,0 = a0, b0,3,0 = a1, and b0,0,3 = a2.

3.2.2. Choice of the six ‘curve’ control points. We required �(bT) should be a smooth piece of surface. In

particular, �(bT) enjoys a tangent plane Tai
S at each vertex ai, whose normal vector ni should match the

reconstructed geometric information at ai.
On the other hand, it is well-known (see [18] for instance) that the whole geometry of Bézier curves and

surfaces can be expressed in terms of their control points; for instance, the tangent vector at a0 to the
boundary curve �2 is 3(b2,1,0 � b3,0,0), and the tangent at a0 to �1 is 3(b2,0,1 � b3,0,0).

Hence, the tangent plane to �(bT) at a0 is the expected tangent plane Ta0
@⌦ provided b2,1,0 and b2,0,1 are

chosen in such a way that (b2,1,0 � a0) and (b2,0,1 � a0) are non colinear, and both orthogonal to n0. Similar
relations hold when it comes to a1, a2 and control points b0,2,1, b1,2,0, b1,0,2 and b0,1,2.

This still allows some latitude as for the choice of these coe�cients. In [43], the authors propose to take,
for instance, b2,1,0 as the orthogonal projection over Ta0

@⌦ of point a0 + (a1 � a0)/3. Instead of this, we
5

3-order Bézier surface
∀(u, v) ∈ T̂ ,

σ(u, v) =
∑

i,j∈0..3

3!

i!j!k!
(1− u− v)iujv1−i−jbi,j,k

21/88

Surface model: control points

Triangle vertex (interpolate by the Bézier surface)

a0 = b3,0,0 a1 = b0,3,0 a2 = b0,0,3

Edge vertex

Tai : tangent plane at vertex ai defined by ~ni and ai
Hypothesis

1 Tangents at ai are onto Tai

2 Edges are curves with constant speed

Example for b2,1,0
1 projection of a1 onto Ta0

2 ~a0b2,1,0 = 1
3 ~a0a1

Last control point

Such as if a quadratic surface exists, it coincides

22/88

Surface model

1 Geometric elements identification (corners, edges...)

2 Normal computation on each vertex P of the discrete
surface

n(P) =

∑
T⊃P αT × nT

||∑T⊃P αT × nT ||
avec

∑

T⊃P
αT = 1

3 Construction of a local geometry :

3-order Bézier surface
∀(u, v) ∈ T̂ ,

σ(u, v) =
∑

i,j∈0..3

3!

i!j!k!
(1− u− v)iujv1−i−jbi,j,k

23/88

Geometric mesh algorithm

Main steps

Geometric elements identification (corners, edges...)

Construction of a local geometry

Evaluation of the Haussdorff distance

Nodes insertions/deletions to control the geometry

Nodes relocations/edge swaps to improve the triangle
quality

24/88

Surfacic node relocation

In both cases, the resulting configuration of the vertex relocation procedure has to be checked, so that no
element ends up invalidated in the process and the quality of the mesh is indeed enhanced.

•p

TpS

@⌦

ep •

Figure 4. Relocation of vertex p: BS(p) is projected onto TpS, and an optimal position is
sought on TpS, then projected onto S (right).

4.2. Local size feature.

At this point, we still lack a global vision to drive our remeshing strategy, that is to identify (and possibly
classify) those edges of T that should be split, collapsed, or swapped. Since [21] [26], a very convenient
means to encode such information has been that of a size function h : ⌦ ! R, so that for each x 2 ⌦, h(x)
accounts for the local desired size for edges of T lying around x. The final aim of the process is then to

produce a new mesh eT of ⌦, whose edges pq have (as far as possible) unit length `h(pq) with respect to h,
that is:

8 pq 2 eT , `h(pq) :=

Z 1

0

||pq||
h(p + t(q � p))

dt ⇡ 1.

In numerical practice, h is defined and stored at the vertices of T :

• If x 2 ST , the size prescription h(x) in a neighborhood of x stems from a heuristic based on the
following theorem (see [11] for a precise statement, and a proof):

Theorem 1. Let ⌦ ⇢ Rd a domain, and T a mesh, whose associated surface mesh ST is ‘close
enough’ from @⌦. Denote as d⌦ the signed distance function to ⌦. Then

dH(@⌦, ST) 1

2

✓
d � 1

d

◆2

max
T2ST

max
x2T

max
y,z2T

h|H(d⌦)(x)|yz, yzi.

Since, for all x 2 @⌦, the Hessian matrix H(d⌦)(x) is nothing but the second fundamental form
IIx : Tx@⌦⇥ Tx@⌦ ! R, this leads us to the choice:

8x 2 S, h(x) =

s
9"

2 max(|1(x)|, |2(x)|) ,

where 1(x),2(x) are the principal curvatures of @⌦ at x. This formula may be truncated according

to the minimal and maximal authorized (Euclidean) sizes for edges of eT , hmin and hmax.
• If x /2 ST , there is no particular size to impose near x, whence: h(x) = hmax.

Of course, this is to be coupled with the possible datum of a user-defined size function m : ⌦ ! R - which
may stem from an error estimate associated to a numerical method performed on T , for instance.

Unfortunately, conforming to such a size prescription is not a su�cient criterion to guarantee the resulting

mesh eT will enjoy a fine mesh quality. As noticed in [5], shocks in size prescriptions between close areas on
T may impose ill-shaped elements to a unit mesh with respect to h. For this reason, it may be desirable

to drive our remeshing operators so that two adjacent edges ap, bp in eT have Euclidean lengths satisfying
9

Point relocation

25/88

Volumic remeshing

Principles

drive by a user-defined size map

no geometric constraints

Tools

Nodes insertions

Nodes deletions

Edge swaps

Nodes relocation

26/88

Node insertion by pattern

Point insertion by pattern.

27/88

Delaunay triangulation:

Delaunay measurement:

α(K,P) =
d(P,OK)

rK

Cavity characterization:

K ∈ CP iff α(K,P) ≤ 1.

P Triangulation Tn

28/88

Delaunay triangulation:

Delaunay measurement:

α(K,P) =
d(P,OK)

rK

Cavity characterization:

K ∈ CP iff α(K,P) ≤ 1.

P Tn − Cn

29/88

Delaunay triangulation:

Delaunay measurement:

α(K,P) =
d(P,OK)

rK

Cavity characterization:

K ∈ CP iff α(K,P) ≤ 1.

P Tn+1 = Tn − Cn ∪ Bn+1

30/88

Delaunay triangulation:

Delaunay measurement:

α(K,P) =
d(P,OK)

rK

Cavity characterization:

K ∈ CP iff α(K,P) ≤ 1.

Anisotropic extension:

α(K,P)M =
`M(P,OK)

rK
.

32/88

Node suppression

Transform edge AB into vertex C.
Three possibilities:

1 Take C = A,
2 Take C = B,
3 Find a vertex C between A and B.

Apply this operator if:
1 all tetra containing C are valid (positive volume and

admissible quality)
2 new configuration has no big edges.

33/88

Edge swap

p

q

a bT1 T2

nT2
nT1

p

q

a b

nfT1

nfT2

fT2

fT1

Figure 2. Swap of edge pq : triangles T1, T2 are updated to fT1,fT2, a configuration more
consistent with the geometric data.

Thus, the number of possible swapped configuration equals the number of triangulations of the
pseudo-polygon, that is the Catalan number Cn, defined as:

Cn =
1

n + 1

✓
2n

n

◆
,

which grows dramatically with n.
So as to avoid a very tedious enumeration of the di↵erent configurations until a valid one is found,

we adopted a somewhat di↵erent approach, less general yet much easier to implement. Swapping
edge pq is achieved within two steps (see figure 3(c)):

•

•

p

q

•
• • •

• • • •

a1
an a2

• m

Figure 3. Swap of pq, introducing its midpoint m in the mesh, then collapsing it on one
of the vertices of the pseudo-polygon associated to Sh(pq).

step 1: pq is split at its midpoint m. All the connections mai, i = 1, ..., n are created in the process.
step 2: Point m is collapsed onto one of the ai: each one of the collapses of edges ma1, ..., man is tested

in turn, and the first valid operation is retained.

4.1.4. Node relocation. This last operator is mainly devoted to improving the quality of the mesh. A vertex
p 2 T is moved to a new position ep so that the quality of the local configuration results improved. Computing
the position of ep follows a di↵erent heuristic depending on whether p belongs to ST or not:

• If p 2 ST , the surface ball BS(p) is projected onto the tangent plane Tp@⌦, and a local parametriza-
tion of @⌦ by a part of Tp@⌦ is generated along the lines of section 3.2. A new position is then
computed on Tp@⌦ as the center of mass of the projected ball of p onto Tp@⌦ (of course, one may
think of other choices as for this new position). Finally, the corresponding point ep is taken on @⌦.

• If p is not a surface point, the ball B(p) of p is enumerated, and ep is taken as its center of mass.
8

Edge swap

36/88

Node relocation

Find a new position for P such as:

all tet containing P ′ have a better quality as the worst
containing P
all edges from P ′ have an admissible lenght

Optimal position:
For all tet i in the ball of P , the optimal position P opti is:

P opti =
1

3

3∑

j=1

(P +

−−→
PPj
l(PPj)

) (1)

P ′ is found via a relaxation method as the barycenter of all
the computed P opti :

P ′ = (1− ω)P + ω(
1

nb

∑

i=1,..,nb

P opti). (2)

where ω is the relaxation parameter (between 0 et 1).

37/88

General algorithm

1 mesh surface analysis

2 geometric remeshing (control of the Hausdorff distance)

3 Edge length analysis (both internal and surfacic)

4 Mesh optimisation (edge swap, node relocation)

At the end : adapted mesh to a prescribed size map

48/88

Motivation III: our choices

Combine:

simplicity of embedded techniques

strength of mesh adaptation

Tools:

level-set description of solid bodies : Sign Distance
Function (SDF)

anisotropic mesh adaptation

Mesh for IBM. Right : Naca0012 airfoil - Left : 2D
Complex Ice Shape

49/88

Outline
Introduction

Useful tools for mesh adaptation
Drive the mesh process
Evaluate a mesh

Local remeshing
Geometric mesh
Volumic remeshing
Coupling surface/volume mesh generation

Generation of a computational mesh from an implicitly defined
domain

Anisotropic mesh adaptation for immersed boundary method
General Ideas
Numerical methods
Accuracy and mesh adaptation
Numerical results
Moving bodies (ongoing work)

50/88

How to locate the objects ?

Domain does not fit the obstacles
⇒ need to know where is the inside and the outside

Definition: signed distance fonction

Considering a domain Ω2 ⊂ Ω1, delimited by a surface Γ :

φ(x, t) =

d(x,Γ) if x ∈ Ω1 \ Ω2

0 if x ∈ Γ

− d(x,Γ) if x ∈ Ω2

(3)

SDF on a mesh for a circle

51/88

How to impose boundary conditions ?

With IBM solid wall BCs are taken into account differently

Penalization : account for the rigid solid (through the
governing equations) using a penalty term

Idea: extend the velocity field inside the solid

u-velocity for NACA0012

52/88

About accuracy

Penalty term active inside the solid only
⇒ accuracy depends on the capture of the interface

Our proposition : mesh adaptation to improve accuracy of
the SDF

Characteristic function for a circle

53/88

About accuracy

Penalty term active inside the solid only
⇒ accuracy depends on the capture of the interface

Our proposition : mesh adaptation to improve accuracy of
the SDF

Characteristic function for a circle

54/88

Physical problem
Full compressible Navier-Stokes equations:

{
∂tUUU + ∂xxx ·FFF = ∂xxx ·GGG (4)

UUU =

 ρ
ρuuu
ρe

 , FFF =

 ρuuu
ρuuu⊗ uuu+ pIdIdId

(ρe+ p)uuu

 and GGG =

 0
πππ

πππuuu+ qqq

with πππ = µ

([
∂uuu

∂xxx

]
+

[
∂uuu

∂xxx

]T
− 2

3

[
∂

∂xxx
· uuu
]
IdIdId

)
the stress tensor.

Boundary conditions:

• inflow/outflow on the
outer boundary

• no-slip boundary on the
obstacles ΓSi :

{
uΓSi = vΓSi = wΓSi = 0

TΓSi = cte

57/88

Residual distribution schemes
overview

1 - Compute ΦT

2 - Distribute ΦT to each DoF of the triangle

Nodal Residual

ΦT
i = βTi ΦT

3 - Gathering all the contributions of each triangle where i
belongs

Residual Scheme

∑

T3i
ΦT
i (uh) = 0

58/88

Resolution of the RDS scheme

The obtained RDS scheme

∑

T3i
ΦT
i = 0

is solved using a pseudo-iterative scheme

un+1
i − uni

∆t
+

1

|Ci|
∑

T3i
ΦT
i = 0

u0
i given

Implicit scheme is used such that 1/η >> 1.

η = 10−12 in our steady simulations.

59/88

BCs inside penalty methods

Penalty source term to impose BCs

Accuracy depends on the capture of the interface

Our proposition : use mesh adaptation to improve
accuracy of the SDF

Characteristic function for a circle

60/88

Mesh adaptation background: metric specification

d× d positive definite symmetric matrix:

M = R Λ R−1

R prescribes the orientation of the edges
Λ prescribes the size

Length definition for an edge e:

lM (e) =

∫ 1

0

√
etM(t)e dt

Metric intersection:

M = M1 ∩M2

61/88

Mesh Adaptation : two criteria

1 Accurate representation of level-set function,

Φ = 0

ε

hmin

hmax

1

2 Accurate capture of flow features.

62/88

Metric definition for good accuracy of level-set[Frey and al.]

Let’s ε an error, hmin (resp. hmax) the minimal (resp.
max.) length edge.

The following metric allows to control the error of an
isovalue:

M = R diag

(
1

ε2
,
|λ1|
ε
,
|λ2|
ε

)
RT (8)

with R = (∇Φ, v1, v2), (v1, v2) a basis of the tangent plane
to the boundary and λi eigenvalues of the Hessian of Φ.

In order to control the 0 isovalue,

∀ nodes close to ΓS , prescribe M
∀ other nodes, increase linearly hmin and ε until hmax.

63/88

Example of level-set mesh adaptation

near the 0-level-set :

-hmax 0.06 -hmin 0.005 -eps 0.005

elsewhere : isotropic mesh

64/88

Example of level-set mesh adaptation

near the 0-level-set :

-hmax 0.06 -hmin 0.01 -eps 0.01

elsewhere : isotropic mesh

66/88

Mesh adaptation

Goal : accurate solution with minimum degrees of freedom
(⇒ decreasing CPU time).

CFD solver

Mesh generation

Solution Interpolation

Metric computationConvergence ?
NO

YES

(Ti ,Mi)

(Ti+1 ,Si ,Mi)
(Ti ,Si)

(Ti ,Si)

(T0 ,S0)

ii + 1

i = 0

67/88

Mesh adaptation with penalization

Laminar subsonic flow around Naca0012.

Reynolds 5000 ; Mach 0.5 ; no angle of attack

Initial mesh : embedded (49 000 pts) and fitted (45 000 pts)

68/88

Mesh adaptation with penalization: leading and trailing edge

physical adap parameter:

ε = 5e− 4; hmin = .10−4; hmax = 2

interface adap parameter:

ε = hmin = 10−4; hmax = 2

Adapted mesh : embedded (101 000 pts) and fitted (85 000 pts)

69/88

Numerical results: Supersonic flow around a triangle 4

S

h

M1

S

y

x

19.5 0.5 25.5

1 120 h

h = 0.5, θ = 20 deg, S = (0.5 , 1),

Re = 5× 104, Prandtl nb = 0.72, M1 = 2, Ts = 3.

Penalized parameters inside the triangle uuu = 0, T = 3

4
O. Boiron, G. Chiavassa, and R. Donat. Computers and Fluids, 2009.

70/88

Numerical results: Supersonic flow around a triangle

Initial mesh : 30407 nodes and 60730 triangles

Interface adaptation parameters :
ε = hmin = 1.10−4; hmax = 2

71/88

Numerical results: Supersonic flow around a triangle

Initial mesh : 30407 nodes and 60730 triangles

Adaptation parameters : ε = hmin = 1.10−4; hmax = 2

72/88

Numerical results: Supersonic flow around a triangle

Initial mesh : 30407 nodes and 60730 triangles

Adaptation parameters : ε = hmin = 1.10−4; hmax = 2

after 3 cycles of adaptation : 49648 nodes and 99184
triangles

84/88

Rotation of a rectangular block

0 isoline, from left to right : t = 0, t = 1.64, t = 2.71

85/88

Rotation of a rectangular block: mass loss

