One-shot methods review of existing approaches

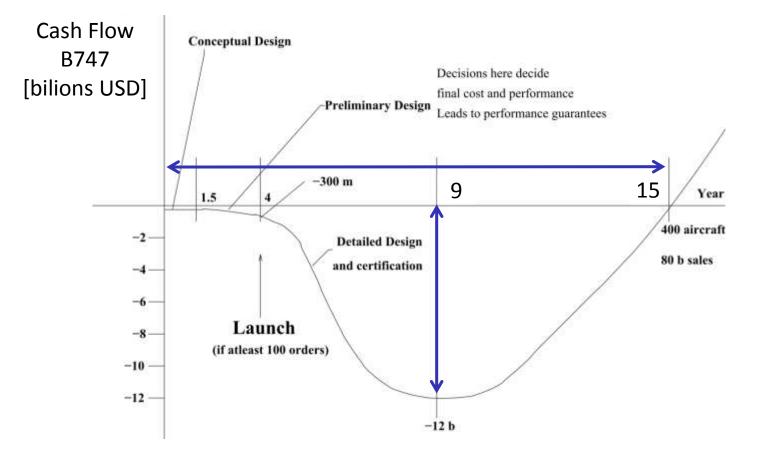
Armen Jaworski

armen@meil.pw.edu.pl

24.06.2015 r.

Motivation

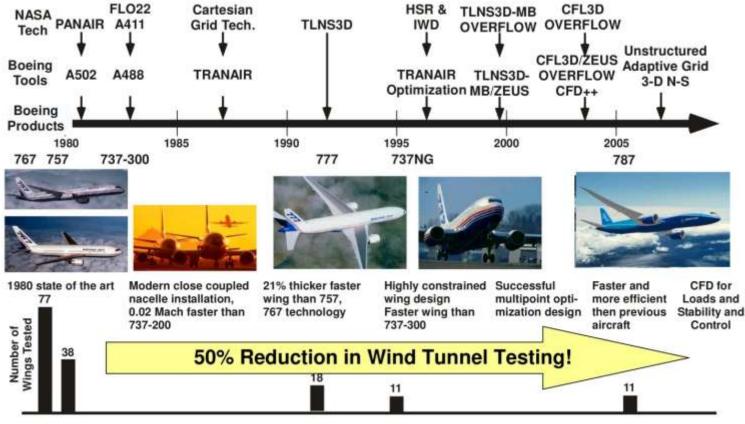
- Increasing demand on efficiency and emission targets
- Development of a new airplane or car requires high investment and time



Source: Antony Jameson, "Airplane Design with Aerodynamic Shape Optimization", Shanghai 2010

Motivation

Numerical simulations have an increasing share in the design process



Source: A. Jameson, "Airplane Design with Aerodynamic Shape Optimization", Shanghai

2010

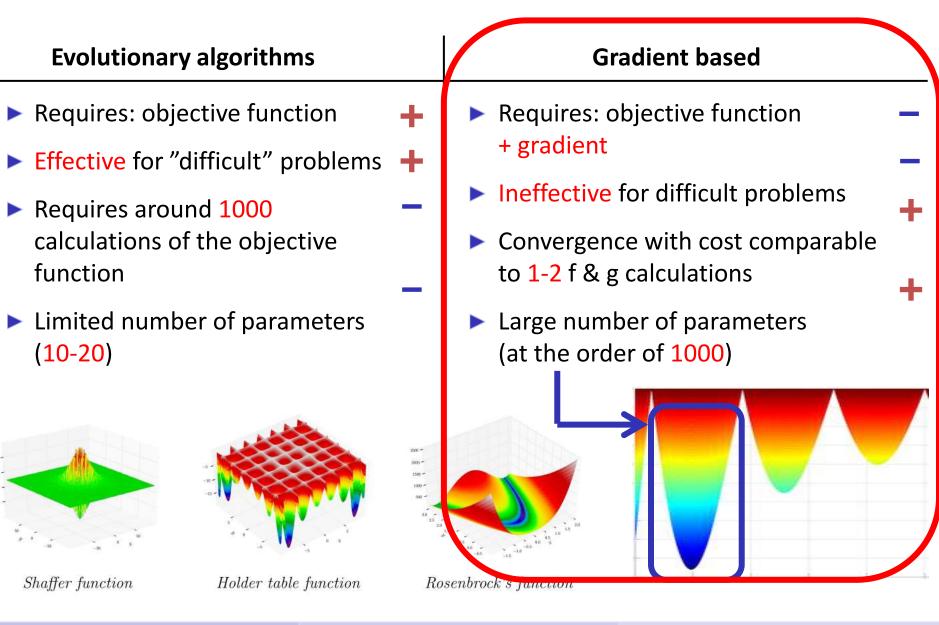
CFD simulations

- becoming common practice in the design process
- Limited by computational power

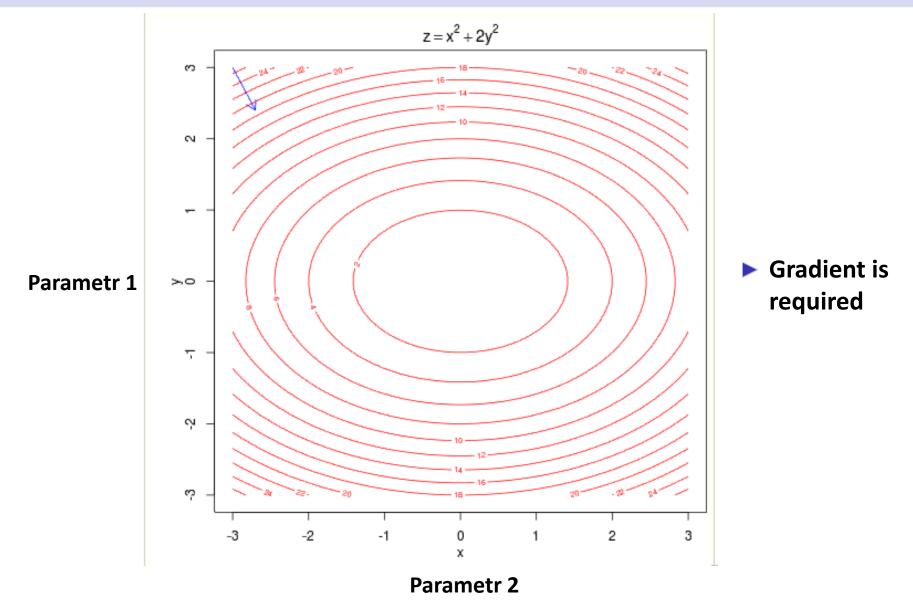
Optimisation

- Require many CFD calculations
- Needs many simulations computational cost is the main limitation
- It is necessary to develop algorithms which can speed up the process of aerodynamic optimisation to enable its wider application in practice

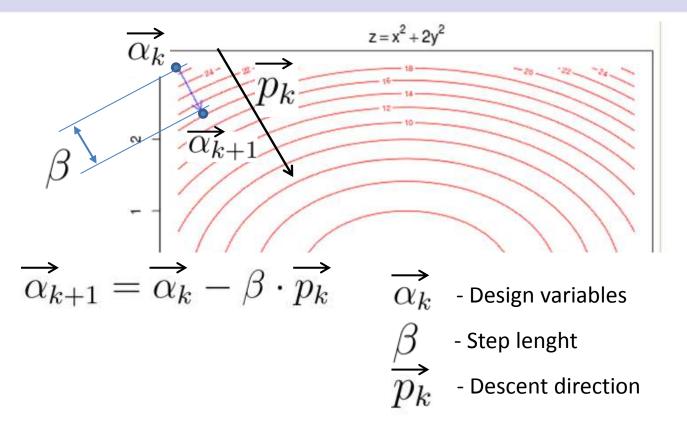
Aerodynamic Optimisation



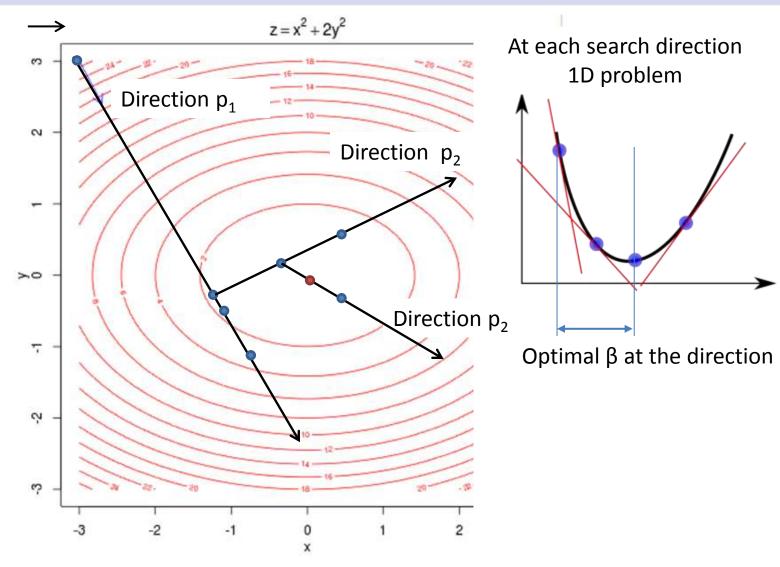
Gradient based optimisation



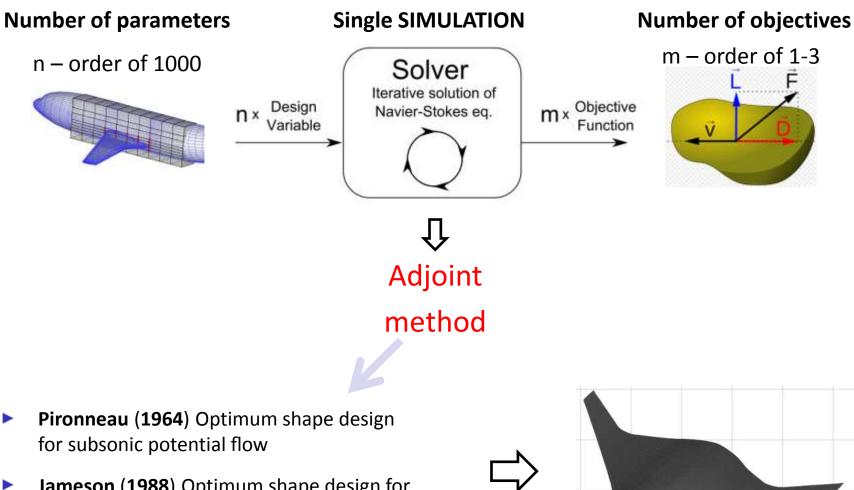
Gradient based optimisation



L-BFGS-B



Aerodynamic Optimisation



Jameson (1988) Optimum shape design for transonic and supersonic flow modeled by the transonic potential flow equation and the Euler equations

Adjoint method

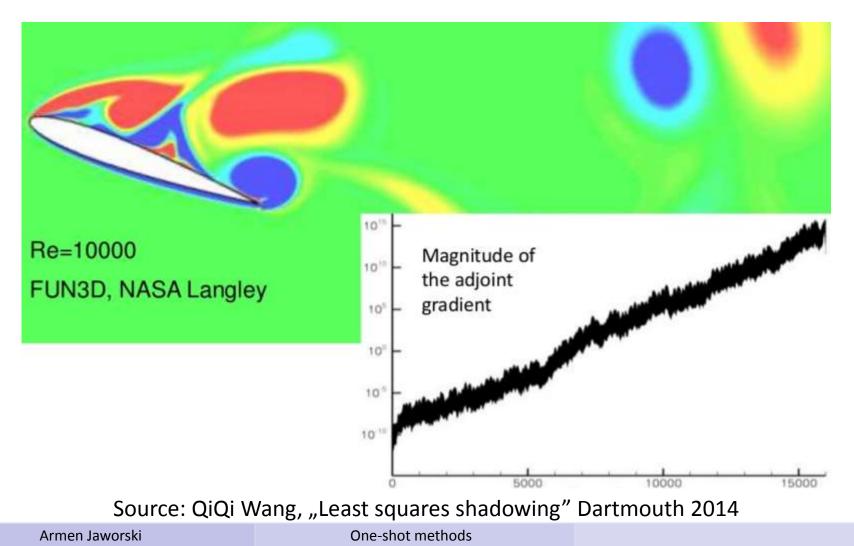
Linearisation in reverse – adjoint method

$$L(Q, \alpha) \Rightarrow \frac{dL}{d\alpha} = \frac{\partial L}{\partial \alpha} + \underbrace{\frac{\partial L}{\partial Q}}_{\partial Q} \frac{\partial Q}{\partial \alpha}$$
$$\frac{dL}{d\alpha} = \frac{\partial L}{\partial \alpha} + \underbrace{\left(\frac{\partial L}{\partial R}\right)^{T}}_{Q} \frac{\partial R}{\partial Q} \frac{\partial Q}{\partial \alpha}$$
$$\left(\frac{\partial R}{\partial Q}\right)^{T} = \left(\frac{\partial L}{\partial Q}\right)^{T}$$
Linear system $A^{T} V = g$

- Cost ~ m (objective functions ~1-3) x (linear system ~ 10⁸ variables)
- The cost is independent of the number of design variables

Adjoint method

Problems with chaotic flows



Adjoint method - limitations

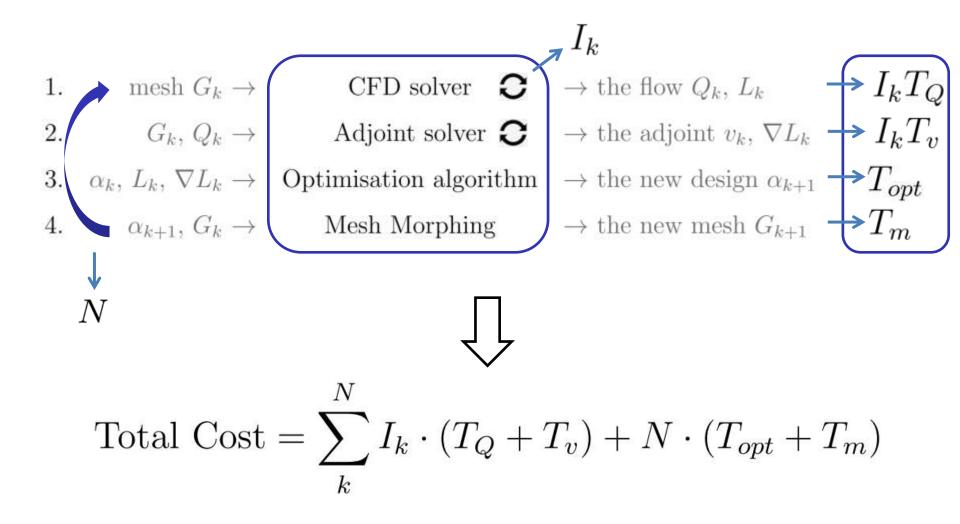
Use of Computational Simulations	Analysis Simulation on manually picked geometry and condition	Design Beyond single simulation, towards optimization and parametric study
Low fidelity simulation Potential flow solver, RANS, URANS	ESTABLISHED	THE FRONTIER
High fidelity Simulation Large Eddy Simulation (LES), Detached Eddy Simulation (DES), Unsteady Multi-physics Simulations	THE FRONTIER	HERE BE DRAGONS
Source: OiOi Mana	Last causes chadowing" Dartmouth 2014	

Source: QiQi Wang, "Least squares shadowing" Dartmouth 2014

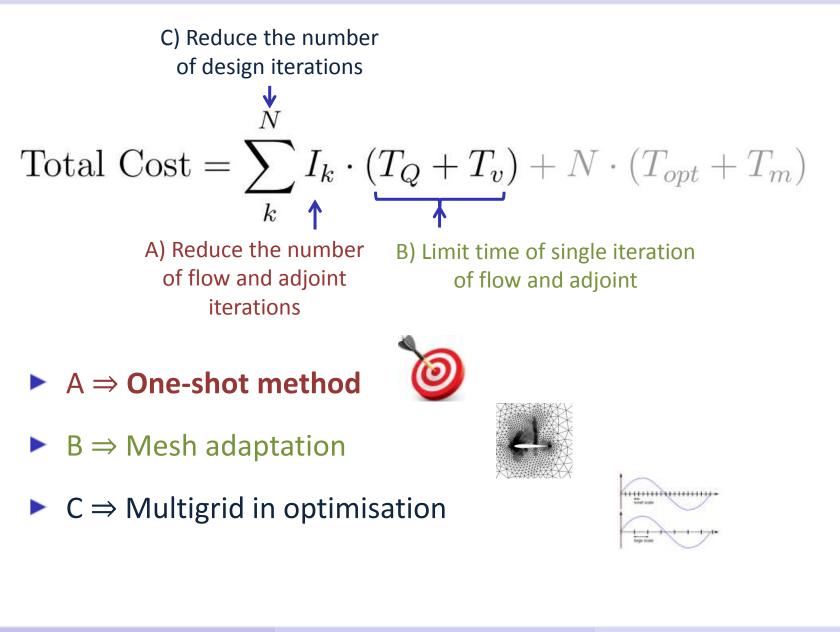
Armen Jaworski

One-shot methods

Cost of gradient based optimisation



How to reduce the optimisation cost

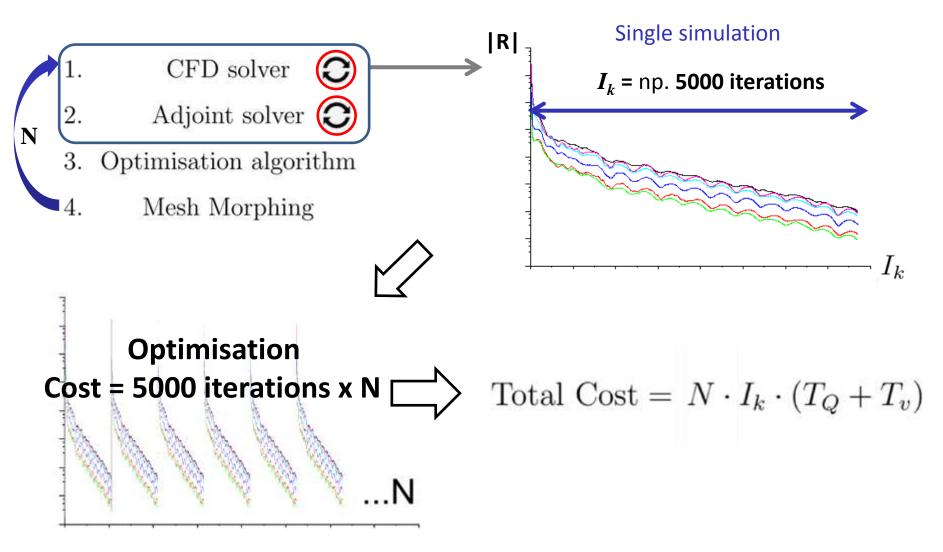


One-shot method

Armen Jaworski

Typical optimisation

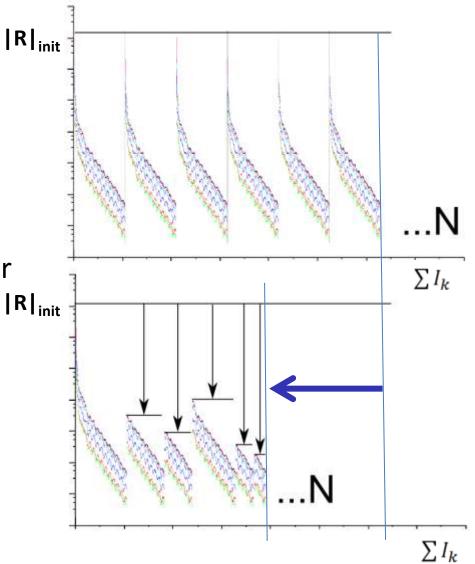
Full convergence of simulation in each optimisation step

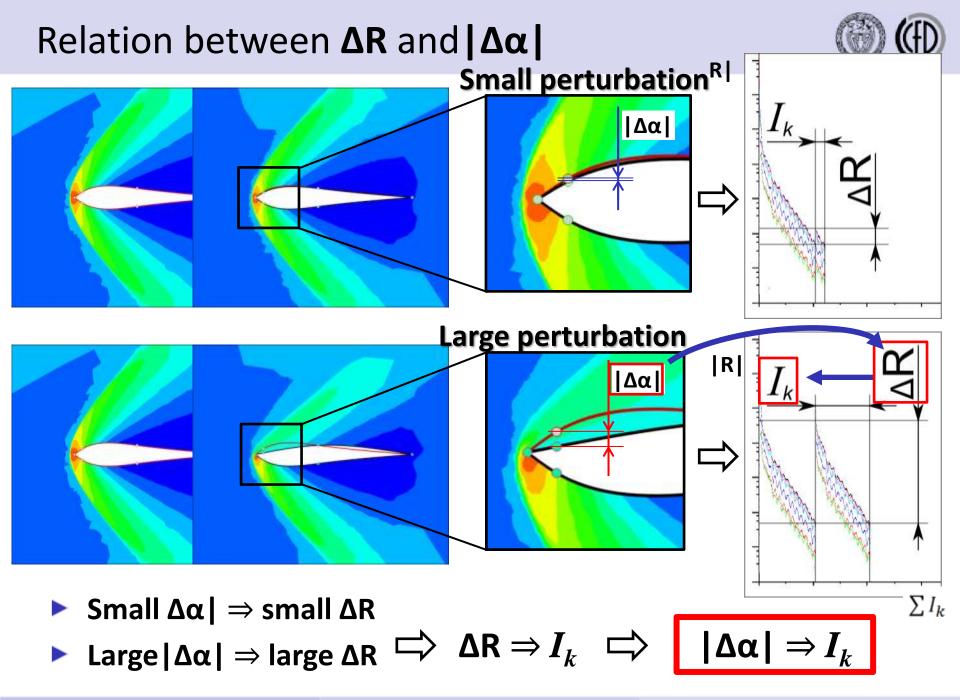


Simple improvement

The use of simulation result from the previous step optimization

- Further steps start from lower value of residuals R IRI
- Lower I_k \Rightarrow lower optimisation cost

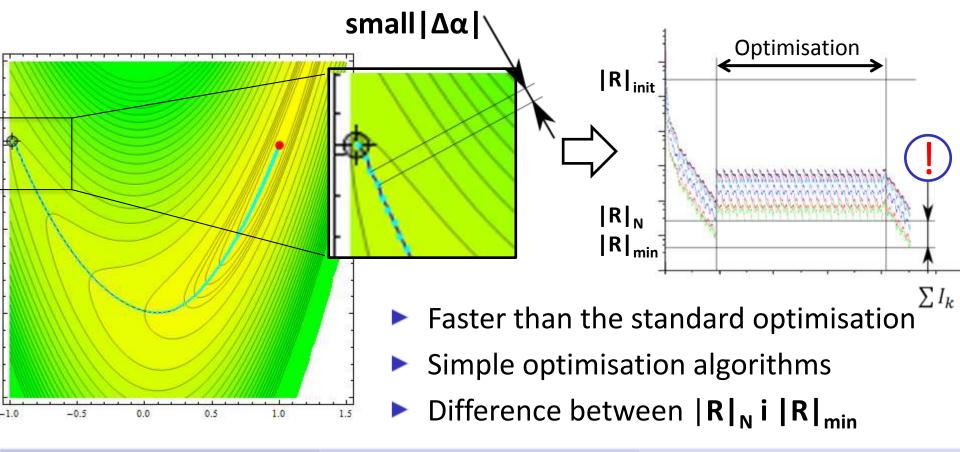




One-shot \Rightarrow , optimisation in one shot"

(H) (H)

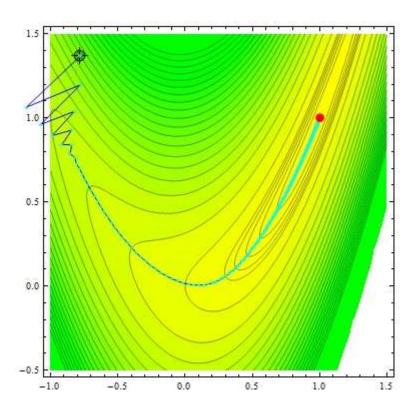
- Solving simultaneously the flow and optimization
 in one shot
- Many opt. steps (\mathbb{N} \uparrow) with very small ($|\Delta \alpha| \downarrow \Rightarrow I_k \downarrow$)

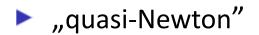


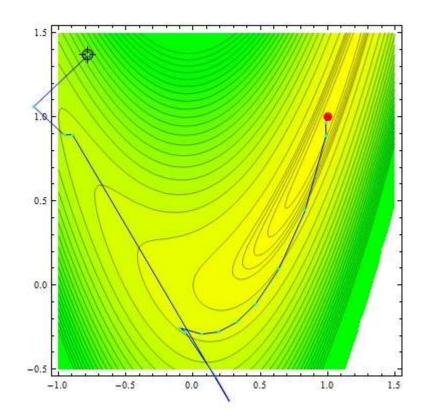
Armen Jaworski

Optimisation algorithms

"steepest descent"

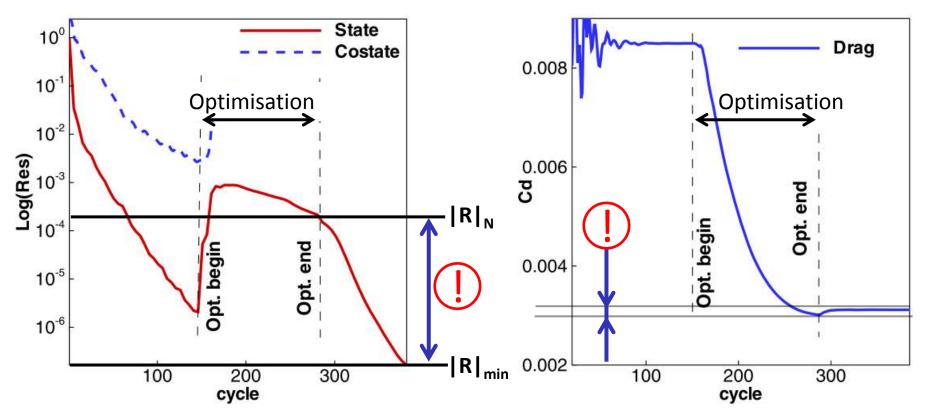






An example of one-shot method

- Optimizing with a moderate accuracy level
- Exact solution only after finishing the optimisation



S. Hazra. Aerodynamic shape optimization using simultaneous pseudo-time-stepping. In Large-Scale PDE-Constrained Optimization in Applications, volume 49 of Lecture Notes in Applied and Computational Mechanics, pages 81–104. Springer Verlag, 2010.

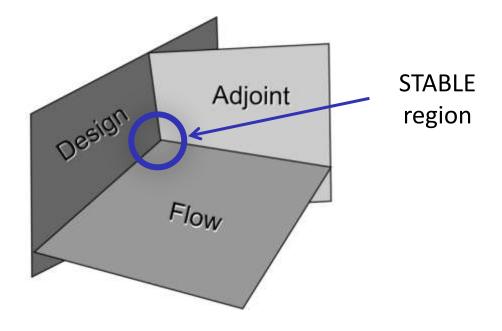
Armen Jaworski

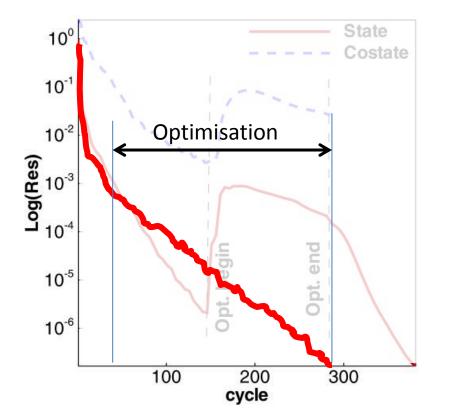
One-shot methods

(H) (H)

$One-shot \Rightarrow "optimization in one shot"$

- At the same time ("in one shot") solve the flow equations optimisation problem (inaccurate simulation)
- Stability requires appropriate balance between convergence solutions (flow and adjoint)? And optimization
- One-shot method how to satisfy the stability condition with lowest optimisation cost

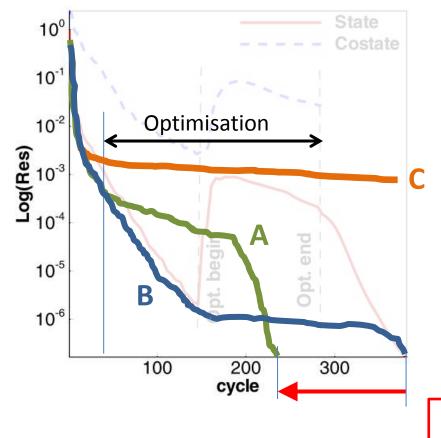




$$|\mathbf{R}|_{\mathbf{N}} = |\mathbf{R}|_{\min}$$

Increasing simulation accuracy during the optimization progress

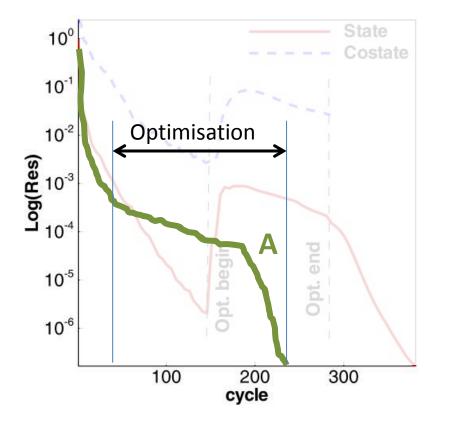
Total Cost =
$$\sum_{k}^{N} I_k \cdot (T_Q + T_v) + N \cdot (T_{opt} + T_m)$$



$$|\mathbf{R}|_{\mathbf{N}} = |\mathbf{R}|_{\min}$$

- Increasing simulation accuracy during the optimization progress
 - A: Low accuracy during optimisation = small I_k
 - **B**: High accuracy during optimisation = large I_k
 - C: No convergence

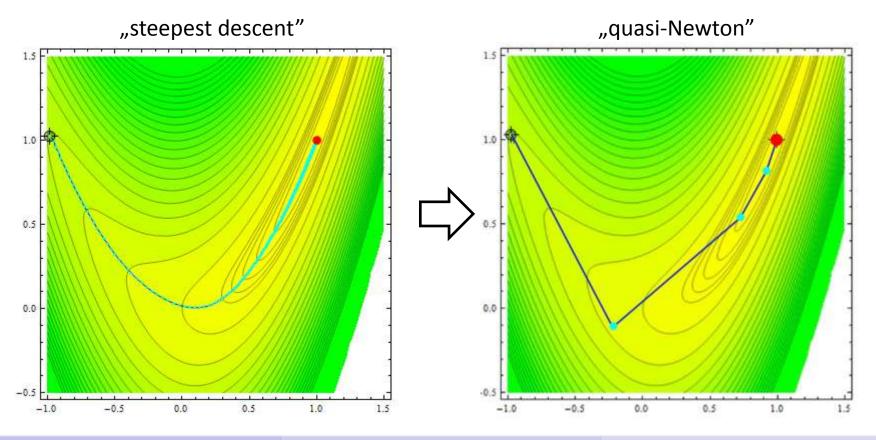
Total Cost << Total Cost B



$$|\mathbf{R}|_{\mathbf{N}} = |\mathbf{R}|_{\min}$$

- Increasing simulation accuracy during the optimization progress
- Optimisation with lowest possible accuracy

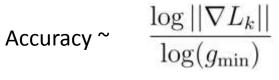
- During optimisation $|\mathbf{R}| = R_k^{\Theta} + / \Delta$
- Step size $|\Delta \alpha|$ determined by the optimizer, and not by the condition STABILITY \Rightarrow it is possible to use more complex and efficient optimisation algorithms



• During optimisation $|\mathbf{R}| = (R_k^{\Theta}) + /-\Delta$

How to determine lowest possible accuracy which will not prevent the optimisation from convergence?

The relation between gradient norm and its target value



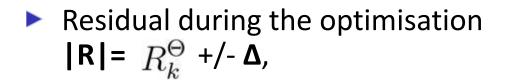
The relation between change in the objective function between search directions compared expected accuracy at convergence

Accuracy ~

$$\frac{\log(\Delta L_m)}{\log(\delta L_N)},$$

The parameter of desired accuracy of the objective function

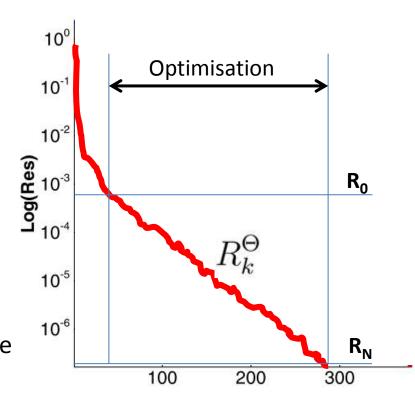
$$\phi_k = \max\left(\frac{\log||\nabla L_k|| - \log||\nabla L_0||}{\log(g_{\min}) - \log||\nabla L_0||}, \frac{\log||\Delta L_m|| - \log||\Delta L_0||}{\log \delta L_N - \log||\Delta L_0||}\right)$$
$$\phi_k \in (0, 1)$$



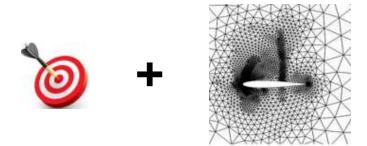
$$R_k^{\Theta} = R_0 \left(\frac{R_N}{R_0}\right)^{\phi}$$

 $\mathbf{R}_{\mathbf{0}}$ – residual threshold |R| at the begining $\mathbf{R}_{\mathbf{N}}$ – residual threshold |R| at opt. convegence

$$\phi_k = \max\left(\frac{\log ||\nabla L_k|| - \log ||\nabla L_0||}{\log(g_{\min}) - \log ||\nabla L_0||}, \frac{\log ||\Delta L_m|| - \log ||\Delta L_0||}{\log \delta L_N - \log ||\Delta L_0||}\right)$$

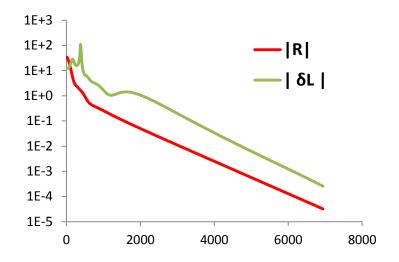


One-shot + mesh adaptation

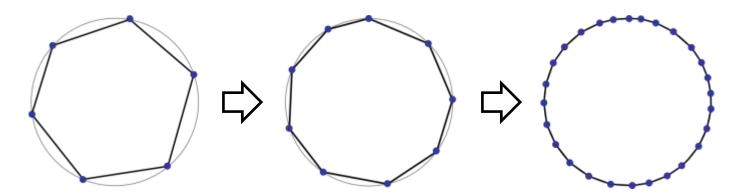


Error due to incomplete convergence

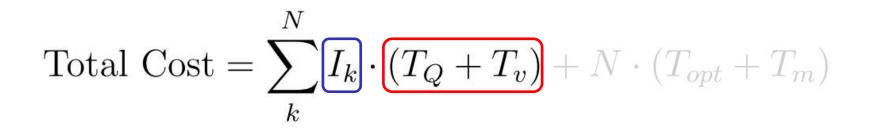
$$\begin{split} \delta L &\approx \frac{\partial L}{\partial Q} \delta Q \\ \delta Q &\approx A^{-1} R \\ ||\delta Q|| &\lesssim ||A^{-1}|| \ ||R| \end{split}$$

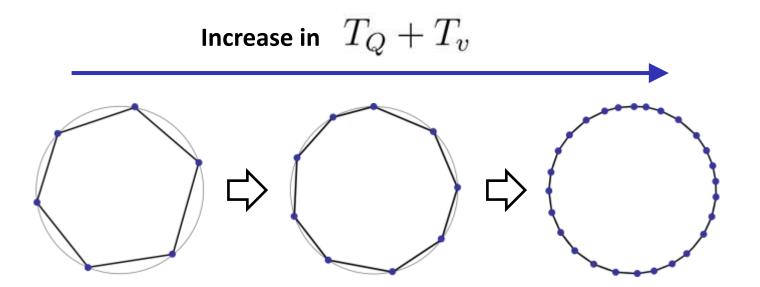


Discretisation error

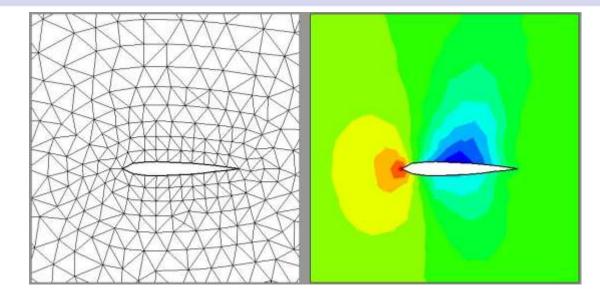


Discretisation – optimisation cost



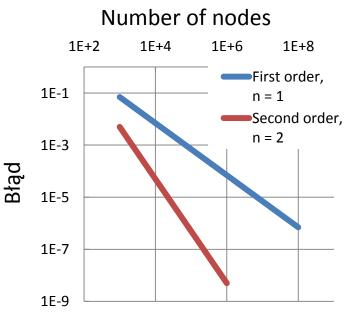


Discretisation error



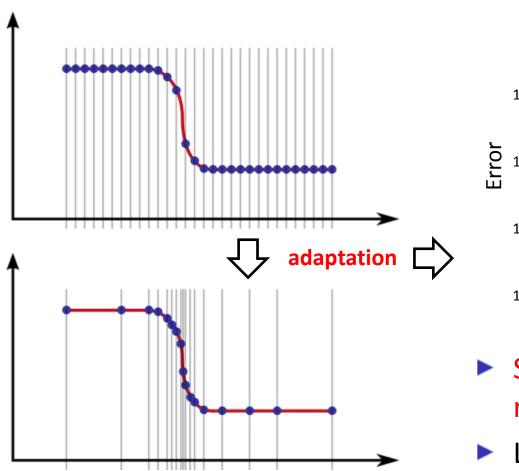
- Uniform grid
- Discretisation error:

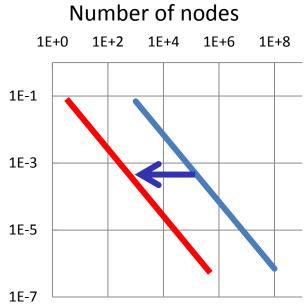
$$E(h) = Ch^n$$



Mesh adaptation

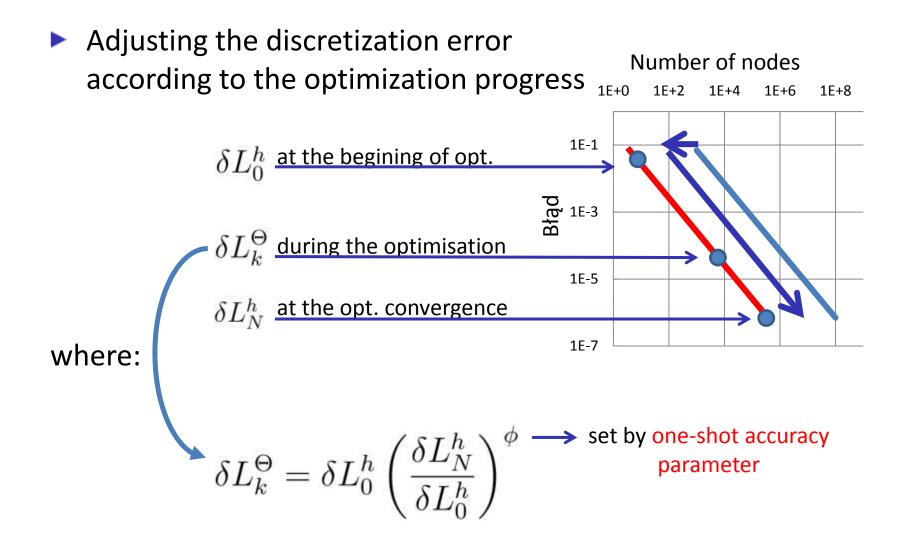
Looking for optimal distribution of mesh nodes





- Similar error with lower number of DOFs
- Lower comp. cost

One-shot + adaptation



Error estimation

For the 2nd order method interpolation error is proportional to the second derivative of the solution (Hessian) $\mathcal{H}_{i,l}$

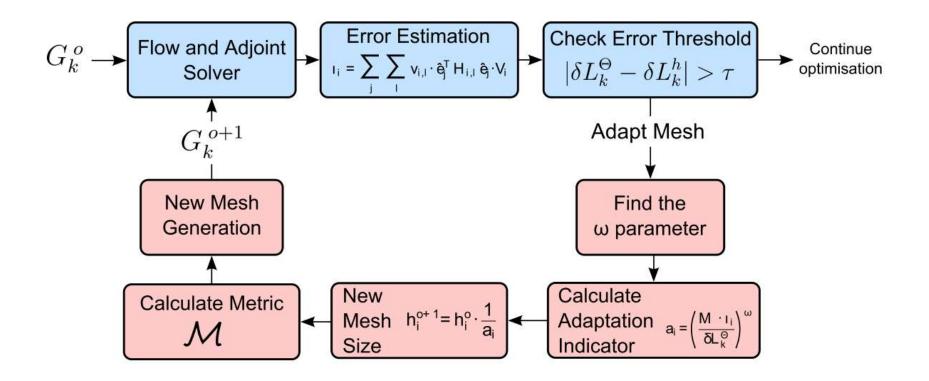
$$|f(x) - f_h(x)| \le \frac{h^2}{8} [f''(x)] + \mathcal{O}(h^3)$$

 Adjoint variable may show the impact of the local error on the objective function (adaptation indicator)

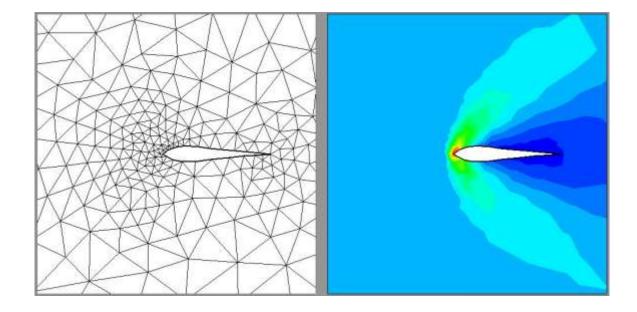
$$\delta L_k^h = \sum_i \sum_j \sum_l v_{i,l} \cdot \left| \hat{e}_j^T \mathcal{H}_{i,l} \ \hat{e}_j \right| \cdot V_i$$

Mesh adaptation process

Another loop nested within the optimisation

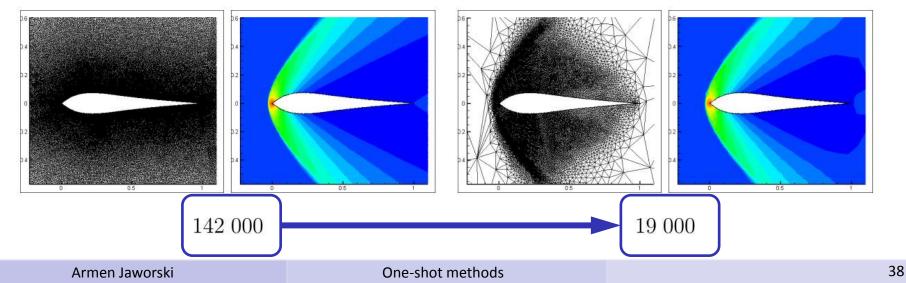


Example of adjoint-based adaptation



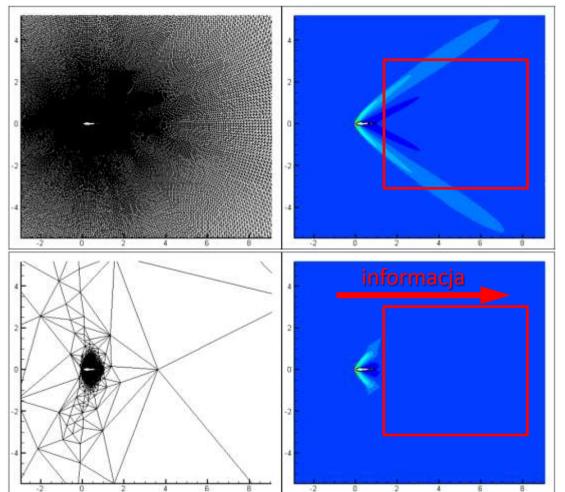
Uniform grid

Adaptation



Example of adjoint-based adaptation

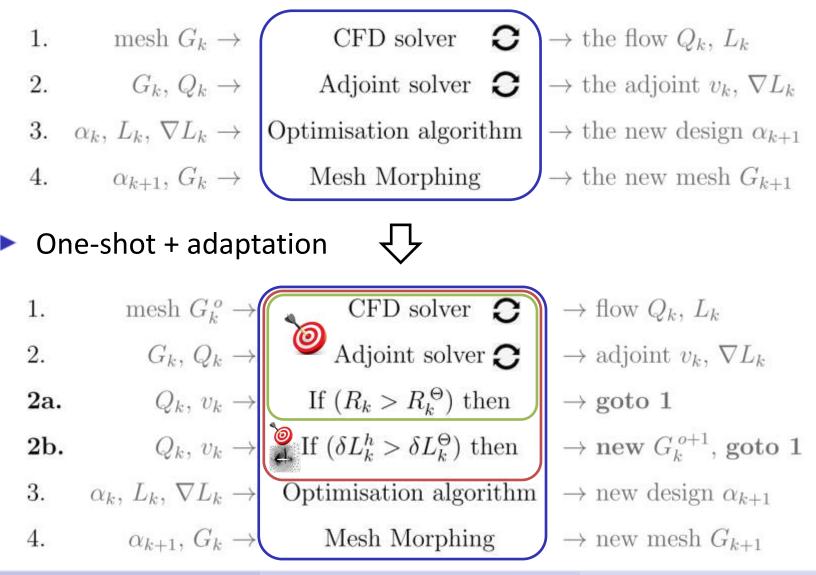
Mesh is refined only in regions important for estimation of the objective function



Region behind the airfoil ⇒ no influence on the objective function based on lift and drag

One-shot + adaptation

Typical optimisation

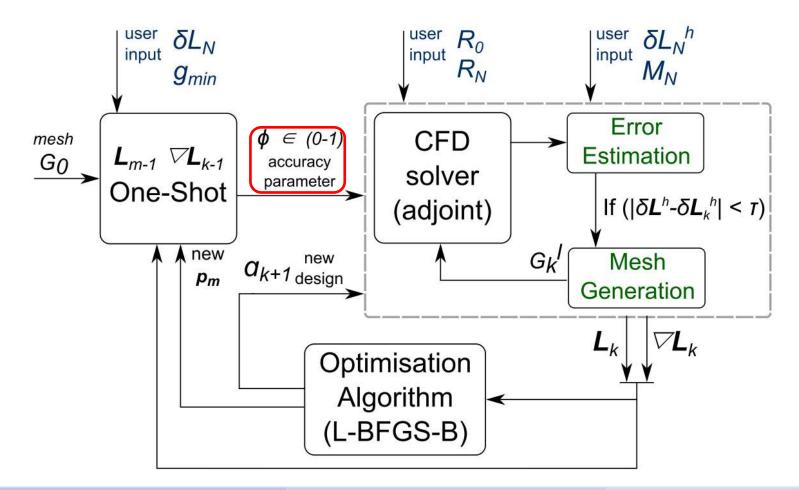


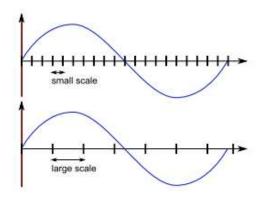
Armen Jaworski

One-shot + adaptation

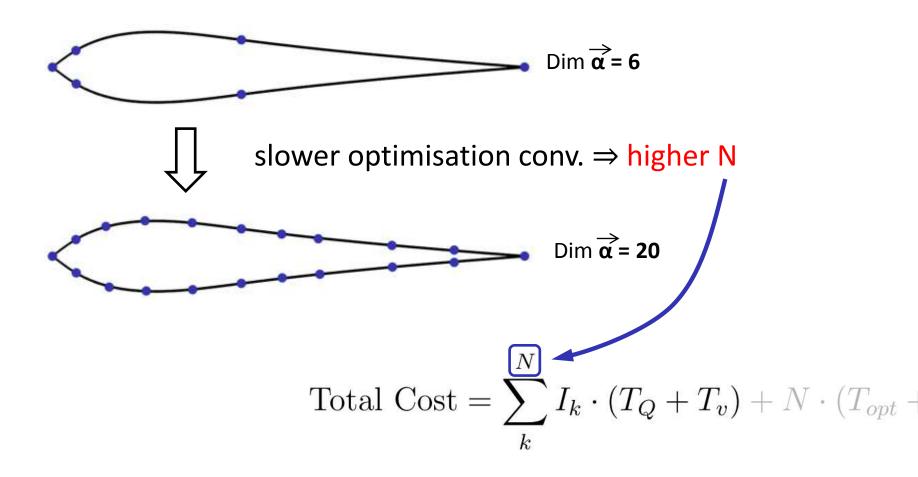
Discretisation error defined by the one-shot approach

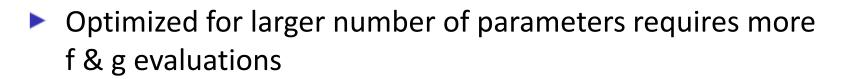
It is possible to use any type of optimisation algorithm

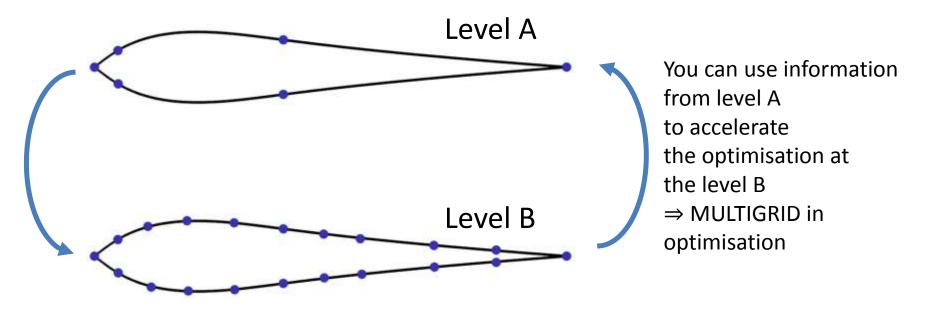




 Optimized for larger number of parameters requires more f & g evaluations

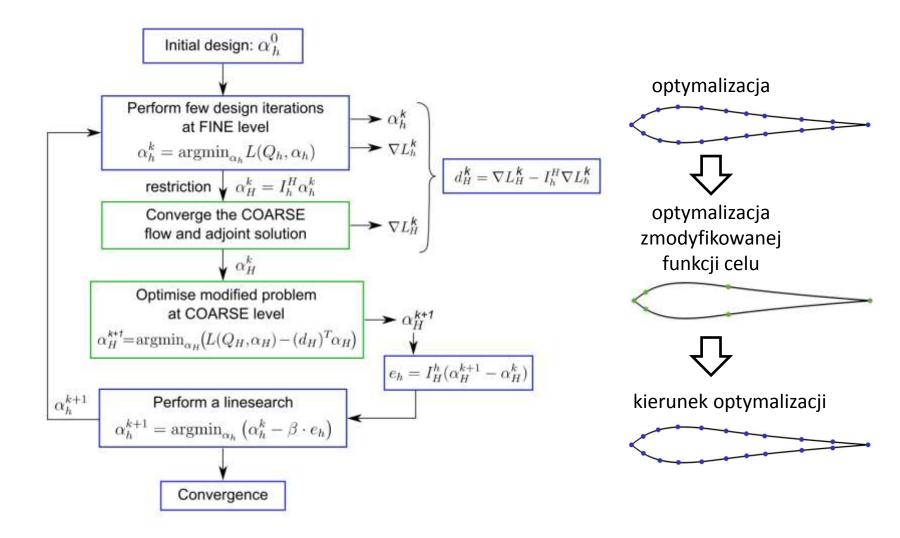




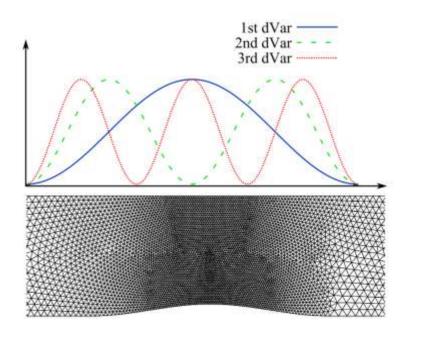


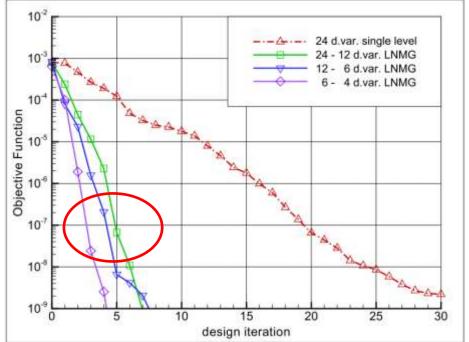
Aim: obtain opt. convergence independent on the number of parameters

The algorithm proposed by Lewis and Nash



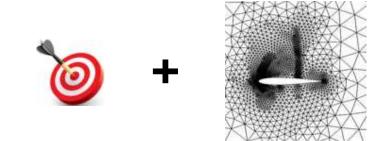
The key aspect is to choose an appropriate parameterisation





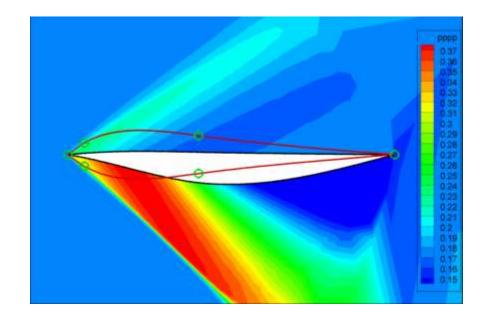
- The coincidence of the number of independent parameters
- Positive result only for Fourier parameterisation difficult to use in realistic cases

Numerical examples



1. Wave-rider

- Optimization target: min drag D for a given lift Z_t , the objective function: $L = D + \sigma \cdot |Z - Z_t|$
- M = 2.0, 4 design parameters



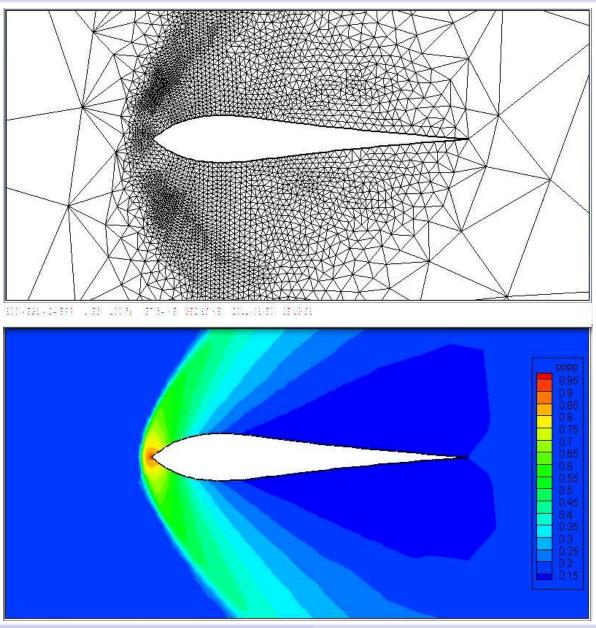
δL_N	g_{min}	R_0	R_N	δL_N^h	M_0	M_N
10^{-4}	0.05	10^{-7}	10^{-10}	0.01(abs.)	600	10 000

1. Wave-rider: optimisation + adaptation

 min drag D for a target lift Z_t

 $L = D + \sigma \cdot |Z - Z_t|$

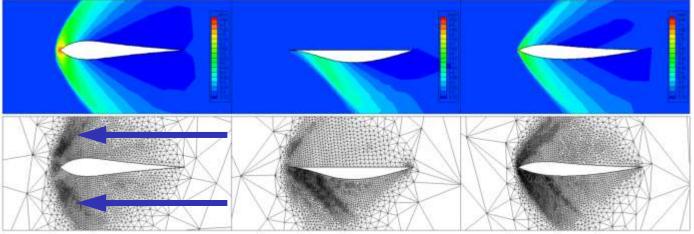
Supersonic flowM = 2.0



Armen Jaworski

1. Wave-rider: optimisation + adaptation

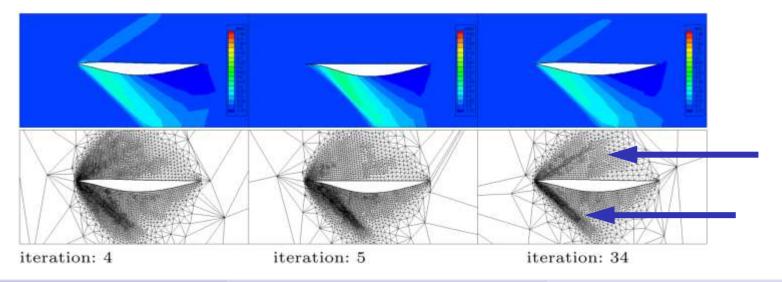
In each optimisation step the optimum discretisation is different



iteration: 1

iteration: 2

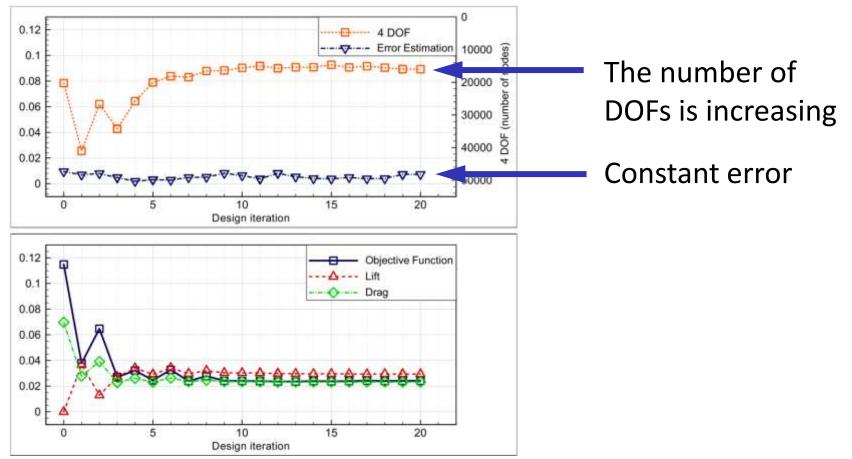
iteration: 3



1. Wave-rider

0

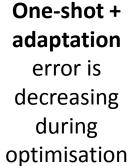
- Optimisation with adaptation ($\Phi = 1$)
- Constant relative error during optimisation

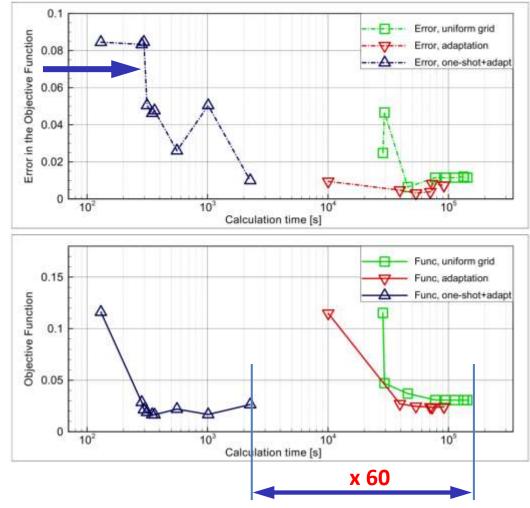


Armen Jaworski

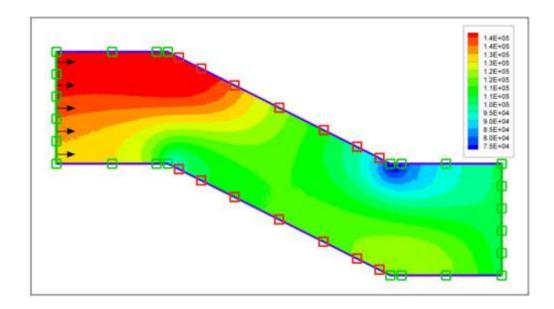
1. Wave-rider

speedup of 60 is reached for one-shot with adaptation





- Laminar flow, Re = 300, ANSYS Fluent v14 adjoint solver
- Optimisation task minimize pressure drop
- 14 design variables, sequence of meshes

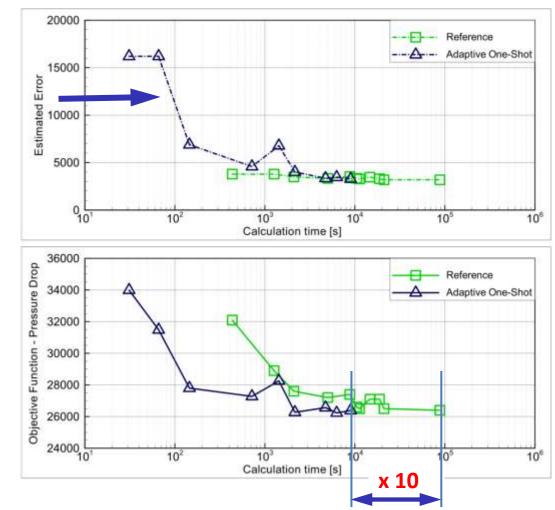


δL_N	g_{min}	R_0	R_N	δL_N^h	M_0	M_N
100	4500	10^{-10}	10^{-10}	20%(rel.)	1 000	15 000

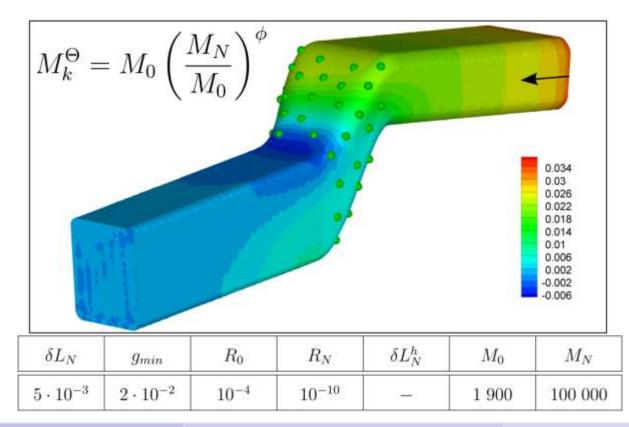
6) (

Speedup of 10 is reached

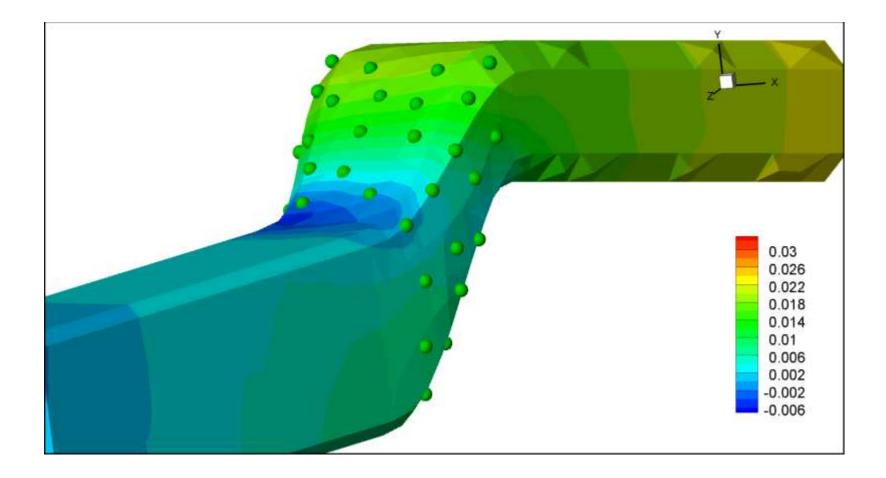
One-shot + adaptation error is decreasing during optimisation



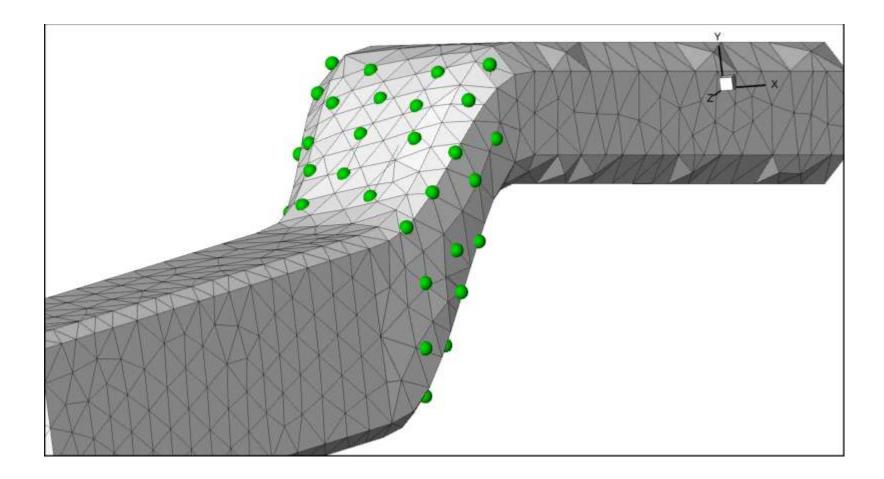
- ۵
- Laminar flow, Re = 300, ANSYS Fluent v14 adjoint solver
- Optimisation task minimize pressure drop
- 150 design variables
- ▶ Sequence of meshes $1913 \Rightarrow 99796$ nodes



Optimisation

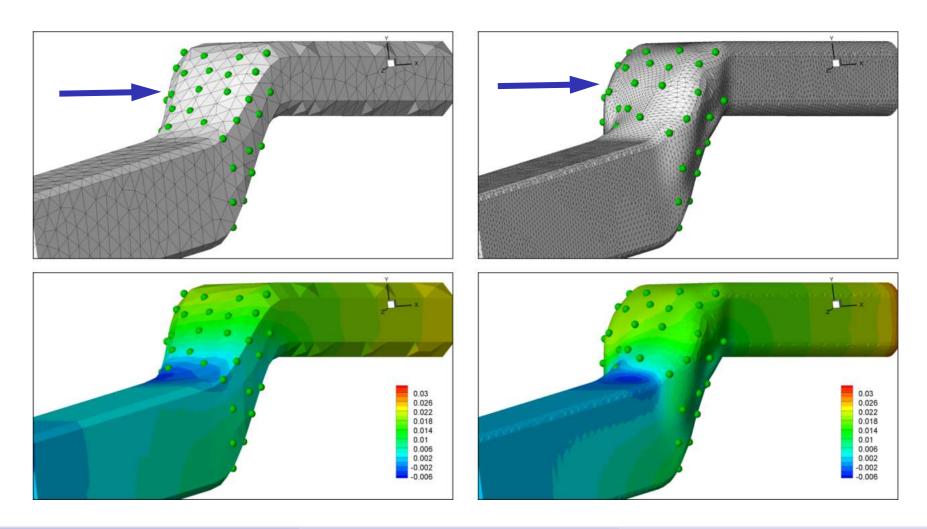


Change in the mesh density during optimisation



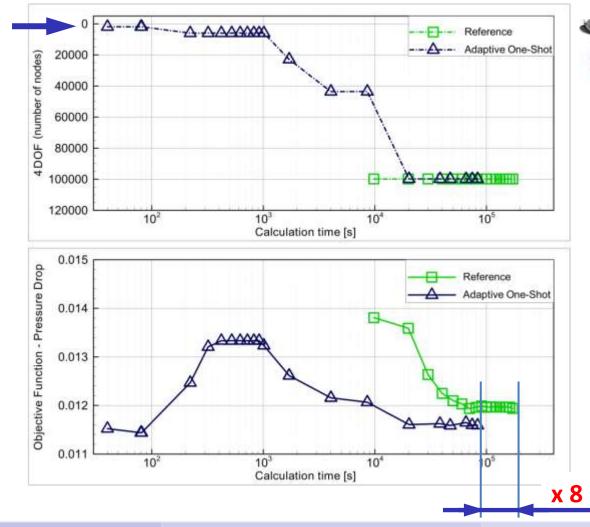
(H) (H)

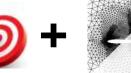
Change in the mesh density during optimisation



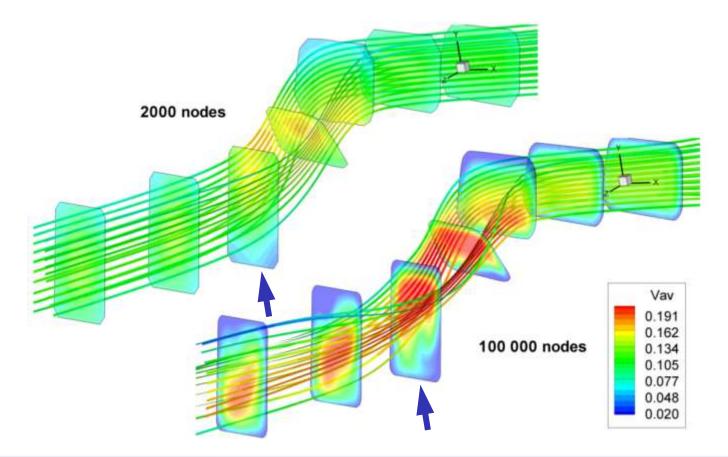
Speedup of 8 is reached

One-shot + adaptation error is decreasing during optimisation





- The impact of simulation accuracy initial geometry
- Coarse discretisation is not resolving important flow features



No.	Test-case	One-shot	Adaptation Approach	Speed-up
1.	2D Wave-rider	δL_k^R and δL_k^h	Adjoint based adaptation	60
2.	2D s-bend	only δL_k^h	Uniform adaptation	10
3.	3D s-bend	δL_k^R and M_k	Sequence of meshes	8

One-shot method in combination with the adaptation achieves from 8 to 60 times faster optimization

This work was supported by EU FP7 FlowHead Project (Fluid Optimisation Workflows for Highly Effective Automotive Development Processes, SCP7-GA-2008-218626)

Thank you!