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Summary

This paper presents the development and application of the continous adjoint method for the shape optimization of wind
turbine blades for maximum power output. A RANS solver, which includes the Spalart–Allmaras turbulence model, is
the flow (primal) model based on which the adjoint system of equations is derived. The latter includes the adjoint to the
turbulence model PDE. The solution of the primal and adjoint equations provides the objective function gradient w.r.t.
the design variables. A volumetric Non-Uniform Rational B–Splines (NURBS) model is used to parameterize the shape
to be designed. In addition, the same tool provides the means to accordingly deform the computational mesh. In order
to reduce the computational cost, the aforementioned tools, developed in the CUDA programming environment, run on
a cluster of Graphics Processing Units (GPUs) using the MPI protocol. Optimized GPU memory handling and GPU
dedicated algorithmic techniques make the overall optimization process up to 50x faster than the same process running on
a CPU. The developed software is used for the shape optimization of an horizontal axis wind turbine blade for maximum
power output.
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1 Introduction

The design of wind turbines, and in particular their blade
shapes, is a major application field in CFD. Though CFD
methods are widely used for the aerodynamic analysis of
wind turbines1, their use in optimization of their bladings
is still limited. The major drawback of CFD based
optimization is its computational cost, especially when
dealing with turbulent flows around complex geometries.
The huge meshes needed for the aerodynamic analysis
of wind turbine blades make the use of stochastic,
population-based optimization methods rather prohibitive.
An alternative is the use of gradient-based optimization
methods, such as steepest descent or quasi–Newton
methods. In such a case, the gradient of the objective
function needs to be computed. To this end, the adjoint
method can be used and this makes the cost of computing
the gradient independent of the number of design variables
and approximately equal to that for solving the primal
equations.

Over and above to any gain from the use of the less
costly methods to compute the objective function gradient,
a good way to reduce the optimization turnaround time
is by using GPUs. Both the flow and adjoint solvers
are ported on GPUs, exhibiting a noticeable speed–up
compared to their CPU implementations2,3. Though the use

of a modern GPU can greatly accelerate CFD computations,
its memory capacity is limited compared to a modern CPU
RAM, posing a limitation when using GPUs for industrial
applications. To overcome this problem, many GPUs, on
different computational nodes if necessary, can be used to
perform the computation in parallel, by making use of the
CUDA environment together with the MPI protocol.

The geometry of wind turbine blades is quite complex,
consisting of airfoil profiles varying largely along the
spanwise direction. As a result, employing a scheme
that parameterizes the exact geometry of the blade and
incorporating it within the optimization process is not an
easy task. Here, a volumetric NURBS model is used to
parameterize the space around the blade rather than the
blade itself4. This model additionally undertakes mesh
deformation, which would have to be carried out by a
different method if a direct surface parameterization model
was used. The main cost of the parameterization model
is the computation of the B–Spline basis functions and
their derivatives, which are herein required for the objective
function gradient, according to the chain rule. In order
to reduce this cost, their computation is also carried out
on the GPUs. The Navier-Stokes equations and their
adjoint are described in section 2. Section 3 describes the
implementation of volumetric NURBS. Section 4 describes
the GPU implementation of the primal and adjoint solvers
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and the parameterization model and, finally, section 5
presents the application of the developed method and
software to a horizontal axis wind turbine blade.

2 Navier-Stokes and Adjoint Equations – Objective
function and its gradient

The flow model is based on the incompressible flow
equations using the Spalart-Allmaras turbulence model.

2.1 Primal equations

The primal equations are the incompressible Navier-Stokes
equations. The pseudo-compressibility approach, as
introduced by Chorin5, is applied. In order to predict the
flow around the rotating blades in steady state, a multiple
reference frame technique is used, where the equations
are solved in a moving frame for the absolute velocity
components. The Navier-Stokes equations are

RUn =
∂ f inv

nk
∂xk

−
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nk
∂xk

+Sn = 0 (1)
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T is the vector of the
state variables, υA

i , i = 1,2,3 are the absolute velocity
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where ν and νt stand for the kinematic and turbulent
viscosity and ω stands for the blade rotational velocity. In
equation 2, υR

i denote the relative velocity components. The
absolute and relative velocity vectors are linked through
υA

i = υR
i −υF

i with υF
i = εi jkω jdk and dk = xk− xC

k are the
components of the position vector from the origin which
lies on the rotation axis.

Equations 1 are solved together with the
Spalart-Allmaras turbulence model6 PDE in a decoupled
time–marching scheme.

2.2 Continuous Adjoint Method Formulation

The selected objective function F is the power output of the
wind turbine blading for constant ω . Its maximization is, in
fact, equivalent to the maximization of the torque w.r.t. the
axis of the wind turbine shaft. If rk denotes the components
of the unit vector aligned with this shaft, F can be expressed
as

F =
∫

SBlade

εklm
(
xl− xC

l
)
(pnm− τmqnq)rkdS (3)

where SBlade denotes the blade surface. In equation 3, nq
are the components of the unit vector normal to the blade
surface and pointing towards the blade.

By introducing the adjoint mean–flow variables Ψn
(n = 1, . . . ,4) and the adjoint turbulent variable ν̃a, the
augmented objective function is defined as

Faug = F +
∫

Ω

ΨnRUndΩ+
∫

Ω

ν̃
aRν̃ dΩ (4)

Upon convergence of the primal equations, Faug is equal
to F . To compute the variations of Faug w.r.t. the design
variables bi, we start by differentiating equation 4, which
yields
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By developing and eliminating the integrals including
the variations in the flow quantities w.r.t. bi, the field
adjoint equations and their boundary conditions arise. All
remaining integrals form the expression of the gradient of
F w.r.t. bi. The field adjoint equations read
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where δi j is the Knonecker’s symbol.
In equation 6, the terms marked as Conv(Ψ) and
Di f f (Ψ) correspond to the adjoint convection and diffusion
respectively, Source1(Ψ) corresponds to the adjoint source
terms resulting from the frame rotation and Source2(ν̃a)
includes the contribution of the adjoint turbulence model
to the adjoint mean–flow equations. The derivation of
the adjoint turbulence model equation can be found in a
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previous work7 published from the same group and will not
be repeated here.

After solving the primal and adjoint equations, δF
δbi
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where ∆ is the distance from the nearest wall, Itorque
l are

terms resulting from the differentiation of the objective
function, ISMF , IV MF1, IV MF2 from the differentiation of
the mean–flow equations and IV SA1, IV SA2, IV SA3 from the
differentiation of the turbulence model equation.

2.3 Discretization and Numerical Solution

The primal and adjoint equations are solved on hybrid
meshes (consisting of tetrahedra, pyramids, prisms or
hexahedra) using the vertex–centered finite volume method
and the time–marching technique. The numerical fluxes
crossing the finite volume intefaces are computed with
second–order accuracy. The primal inviscid numerical flux
crossing the interface between nodes P and Q reads

Φ
PQ =

1
2

(
f inv,P
nk + f inv,Q

nk

)
nPQ

k −
1
2

∣∣∣APQ
nmknk

∣∣∣(UR
m−UL

m
)

where nPQ
k are the components of the unit vector normal

to the finite volume interface between nodes P and Q and
pointing to node Q and the jacobian APQ is computed
based on the Roe–averaged8 flow variables. UR and UL

are the flow variables on the right and left sides of the
finite volume interface, obtained by extrapolating UQ and
UP respectively.

The adjoint inviscid numerical fluxes are computed
using a non–conservative scheme.
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Thus, the adjoint flux entering the finite volume of node P
is not the same as the flux exiting the finite volume of node
Q.

For the computation of the viscous fluxes, the
derivatives of any primal flow or adjoint quantity W on

the finite volumes interface (between nodes P and Q) are
computed as
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The discretized equations are linearized and solved
iteratively w.r.t. the correction of the primal/adjoint
variables (delta formulation) using a point–implicit Jacobi
method.

3 Parameterization through volumetric NURBS

Volumetric NURBS are rational trivariate (in 3D)
B–Splines defined on non-uniform knot vectors, used
to parameterize the volume around the blade. Let (ξ ,η ,ζ )
be the three parametric directions and X i jk

m and wi jk denote
the (i jk)th control point coordinates and weight. Given
the parameteric coordinates of a point as well as the knot
vectors and control points coordinates/weights, its physical
coordinates xm(m = 1,2,3) can be computed as

xm(ξ ,η ,ζ ) =

Nξ

∑
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∑
j

Nζ

∑
k

Ξi,pξ
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where, Ξi,pξ

is the ith B-Spline basis function of degree pξ

defined on the knot vector Kξ = {ξ0, . . . ,ξmξ
} (H j,pη

and
Zk,pζ

are defined similarly), Nξ is the number of control
points in the ξ direction and it must hold that mξ = Nξ+

pξ+19. Knots must be arranged in a non-decreasing order.
Specifying the control points, weights and knot vectors,

a point inversion, via the Newton-Raphson method, is used
to calculate the parametric coordinates of the mesh nodes.
The so–computed parametric coordinates as well as the knot
vectors remain fixed during the optimization. All variations
of geometric quantities, such as δxl

δbi
and ∂

∂xk

(
δxl
δbi

)
, involved

in the computation of the objective function gradient can be
computed by using closed–form expressions resulting from
the differentiation of equation 13.

During the optimization loop, the control point
coordinates and weights are updated and equation 13 is
used to provide the deformed computational mesh and blade
shape.
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4 Implementation on GPUs

Nowadays, GPUs have become powerful parallel
co–processors to CPUs, offering more than one order
of magnitude more floating point operations per second
(FLOPS) with lower memory latency compared to modern
CPUs.

Although the GPU hardware capabilities are superior to
the CPU ones, directly porting a CPU code on GPU does
not necessarily yields the desired high speed-ups, due to
different architecture features. The Navier-Stokes/adjoint
equations solver this paper makes use of, efficiently exploits
the high computing capabilities that modern GPUs have,
running on a GPU at least 50 times faster than the
equivalent CPU solver. Such high parallel efficiency mainly
results from (a) the use of Mixed Precision Arithmetics
(MPA), which allows the l.h.s. matrices to be computed
using double-precision and stored using single-precision
arithmetics2, without harming the accuracy of the solver and
(b) the minimization of random accesses to the relatively
high latency device memory by concurrently running
threads.

For maximum speed–up, the primal and adjoint
solvers employ different algorithmic techniques for the
computation of the nodal residuals and l.h.s. coefficients.
In previous work of the authors3, it is shown that, when
processsing large amount of data on a GPU, minimizing
memory usage and non–coalesced memory accesses is
more important than minimizing the number of (rather
redundant) re–computations of the same quantity. Thus, the
primal solver, in which the memory consuming Jacobians
per finite volume interface need to be computed for the l.h.s.
coefficients at each pseudo–iteration, uses a one–kernel
scheme. According to this scheme, a single kernel is
launched, associating each GPU thread with a mesh node.
Each thread computes and accumulates the numerical fluxes
crossing all boundaries of this node’s finite volume and their
Jacobians and, thus, forms residuals and l.h.s. coefficients.
On the contrary, since for the solution of the adjoint
equations the l.h.s. coefficients depend only on the primal
solution field, the Jacobians are computed once, before the
iterative solution of the adjoint equations. Thus, the adjoint
solver employs a two–kernel scheme in which the less
memory consuming adjoint numerical fluxes are computed
by the first kernel (which associates GPU threads with finite
volume interfaces) and accumulated by the second kernel
(which associates GPU threads with mesh nodes).

The primal/adjoint solvers run on a cluster of GPUs. In
order to run a case in many GPUs, the mesh is partitioned in
overlapped subdomains and each subdomain is associated
with one GPU. For instance, figure 1(a) shows a triangular
mesh generated around an isolated airfoil partitioned in
three overlapped subdomains. The shared regions of the
mesh subdomains are marked in white in figure 1(a).
The whole mesh (i.e. including the overlapped regions)
of the 3rd subdomain, with the boundaries shared with
subdomains 1, 2, can be seen in figure 1(b). To further

reduce the wall–clock time, computations and data transfers
overlap. For instance, when computing the primal/adjoint
spatial gradients, each GPU associated with a subdomain
performs the same sequence of steps. As an example,
the GPU associated with the 3rd subdomain performs the
following steps:

Step A: launches a kernel only for the computation of the
gradients at the nodes interface with subdomains
1 and 2 (i.e. nodes lying on the blue and red lines
of figure 1(b)),

Step B: performs the data interchange between the
subdomains (asssigned to different GPUs) and

Step C: launches a kernel for the computation of
the gradients at the remaining nodes of the
subdomain.

Steps A, B can be performed simultaneaously with step C so
that computations and data transfers overlap. Data transfers
among GPUs on different computational nodes use the MPI
protocol. The communication of GPUs on the same node is
performed through the shared (on–node) CPU memory.

(a)

1
2

3

(b)

Figure 1: Mesh with triangular elements around an isolated
airfoil partitioned in three overlapped subdomains.

The computations of the parametric coordinates of the
mesh nodes and the objective function gradients, which
are computationally intensive and memory demanding,
also run on the GPUs. Since δxl

δbi
, which is needed

for δF
δbi

, are geometric quantities independent of the
primal/adjoint solution, they could be computed and stored
once. However, the memory needed for storing δxl

δbi
often

exceeds that required for the solution of the primal and
adjoint equations. Hence, their storage is avoided and they
are re–computed at the end of each optimization cycle using
pre–allocated GPU memory.

The optimization algorithm is shown, as a flowchart,
in figure 2. Steps performed exclusively on CPU or GPU
are clearly marked. Expensive processes associated with
the computation/update of the mesh geometrical data, such
as computing node distances from the nearest wall, are
performed on the GPU, while others such as computing
the cells volumes are performed at the same time on the
CPU. Thus, all available computing resources are exploited
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Figure 2: Flowchart demonstrating the optimization
algorithm steps. Steps performed on the CPU and the GPU
are distinguished.

and the wall clock time needed to perform these tasks is
reduced.

5 Optimization of the Wind Turbine Blade

This software was used for the shape optimization of the
MEXICO10 horizontal axis wind turbine (HAWT) blade
for maximum power output, when operating with 10 m

s
farfield velocity and 0◦ yaw. The mesh consists of about
2.5×106 nodes. The primal/adjoint solver run on 4 NVIDIA
Kepler K20 GPUs, lying on two different nodes. For the
parameterization of the blade, a NURBS control volume is
used, as shown in figure 3. The computationally expensive
steps of solving the primal and adjoint field equations need
approximately 15min and 10min per optimization cycle,
respectively.

Figure 3: Parameterization of the HAWT blade.

The pressure coefficient distribution on the blades is
shown in figure 4, while relative velocity streamlines in
the tip vortex region are plotted in figure 5. Figure 6
shows a comparison of the chordwise distribution of the
pressure coefficient with experimental results measured in
the MEXICO study10.

(a)

(b)

Figure 4: Pressure coefficient (cp) distribution on the
blade’s pressure (a) and suction (b) side. The pressure
coefficient is defined as cp =

p−p f ar
1
2V 2

f ar+ω2R2 , R being the local

radius and f ar indexing farfield flow quantities.

Figure 5: Relative velocity streamlines in the tip vortex
region. Streamlines are coloured by the relative velocity
magnitude.
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Figure 6: Comparison of the pressure coefficient
distribution at 60% of the blades span with experimental
results10.

Optimization convergence history and a detailed analysis of
the optimized blade will be included in the full paper.
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