
EUROGEN 2015 September 14-16, 2015, Glasgow, UK

Fixed-Point solution of discrete adjoint for
SIMPLE-type incompressible solvers

Siamak Akbarzadeh*
School of Engineering and Materials Science (SEMS)

Queen Mary, University of London, Mile End Rd, London, E1 4NS, UK
Email: s.akbarzadeh@qmul.ac.uk

Jens-Dominik Müller
School of Engineering and Materials Science (SEMS)

Queen Mary, University of London, Mile End Rd, London, E1 4NS, UK
Email:j.mueller@qmul.ac.uk

Summary

The derivation of incompressible adjoint CFD codes through automatic differentiation (AD) is discussed with focus on
SIMPLE-like incompressible solvers. Based on the algebraic form of the segregated SIMPLE scheme, a fixed-point
form of the discrete adjoint is derived. Using the coefficient matrix of the original linearised flow equations (primal)
and writing the adjoint driver code as close as possible to the primal, to improve the performance. Moreover, one can
use the new approach in a one-shop optimisation method in which the adjoint solution iteration can be started from the
adjoint solution obtained in the previous design step. Using Tapenade1 as an AD tool, the approach is implemented in the
in-house incompressible flow solver GPDE Final results will also demonstrate the implementation of the method withe
application of dco/c++2 to the open-source CFD package, OpenFOAM.

Keywords: CFD, SIMPLE algorithm, discrete adjoint, shape optimisation.

1 Introduction

Adjoint solvers are an essential ingredient for sensitivity
applications with CFD: shape and topology optimisation,
parameter estimation, mesh adaptation and uncertainty
quantification. Continuous formulations have been
pioneered by Jameson,3 where the adjoint equations are
derived and then discretised. Major issues with the
continuous approach are a) the significant effort in keeping
the adjoint up to date with its complementary flow code, b)
the lack of understanding of the stability of the discretised
adjoints and c) the fact that due to the re-discretisation
the sensitivities are not guaranteed to vanish when the
flow discretisation (the primal) predicts a minimum for the
objective function.

As an alternative discrete formulations have been
rising in popularity where the discretised equations of
the flow solver are differentiated and transposed.4, 5 The
discrete approach guarantees convergence if the primal is
convergent which is a major attraction of the approach. This
however has to be weighed against the fact that for complex
industrial configurations the flow typically does not fully
converge with standard iterative approaches, which may
lead to a divergent adjoint,6 hence stronger solvers are often

required.
The discrete adjoint approach can be automated

using AD tools,1, 2 which bears the aspiration that the
generation of the adjoint code may be fully automated.
However, in practice, developing discrete adjoint codes
using AD often is no less painful and labour-intensive
than hand-differentiated discrete codes: the preparation of
the code may be significant to make it parse-able with
AD tools and achieve acceptable runtime performance
and especially memory footprint. Significant advances
however have been achieved with compressible codes that
use fully-coupled discretisations5 and manually constructed
fixed-point time-stepping loops that minimise the memory
requirements.

Using the source-transformation AD tool Tapenade,1

the discrete adjoint for the incompressible SIMPLE
algorithm7 has been presented in the literature.8, 9 However,
their ’brute-force’ application of AD which submits the
entire inner iterative loop to the AD tool leads to a
significant overhead in memory and runtime. Moreover,
due to the accumulation of sensitivities from zero adjoint
the approach cannot make use of solutions from previous
design steps in ’one-shot’ optimisation algorithms, but has
to accumulate starting from a zero adjoint solution.

1



EUROGEN 2015 September 14-16, 2015, Glasgow, UK

A continuous adjoint formulation for SIMPLE-type
incompressible flow discretisations, has been introduced
and implemented in OpenFOAM10 which is being
widely used for industrial application with topology
optimisation.11 The discrete adjoint of OpenFOAM has
been presented by Towara et al.12, 13 Since OpenFOAM is
written in advanced C++ language with use of high-level
syntax, no source-transformation AD tool is currently able
to differentiate it. Due to this reason, Towara et al. use
the operator-overloading (O-O) tool dco/c++ of RWTH
Aachen2 which is adapted to parse and differentiate the
code but constrained by high memory demand due to the
nature of o-o tools which do reading and writing memory
operations (’taping’).

Stück et al.14 have proposed a hybrid of continuous
and discrete approaches where they reuse some of the
operators of the primal, but derive and re-discretise
boundary conditions. Here we derive a fixed-point form15

of the SIMPLE algorithm that allows ’hot-starts’ with
arbitrary adjoint solutions. This formulation uses the
transpose of the operators and coefficient matrices from
the primal, as shown by Stück,14 to solve the adjoint
equation in a fixed-point iteration algorithm that can be
regarded as SIMPLE adjoint loop. In contrast to Stück
approach in which the boundary conditions and Adjoint
Transpose Convection (ATC) are treated continuously, here
we compute those terms by either application of AD or hand
differentiation.

The method is implemented in an in-house
SIMPLE-type incompressible solver code called GPDE
which is written in FORTRAN language. Since the code
can be differentiated by source transformation AD tools,
Tapenade is used to differentiate the cost function, the
internal and boundary fluxes to compute the right hand side
of momentum and pressure equations. Then, the transpose
of coefficient matrices and operators from primal and
the differentiated subroutines are combined to write the
fixed-point adjoint driver code close to the primal SIMPLE
loop.

In the final application to OpenFOAM such straight
forward steps might not be doable. Due to nature of o-o tool
like dco/c++, all differentiated functions and subroutines
are written on the memory tape and accessing and reusing
them in a different driver would be difficult. The solution
might be the following steps: a)apply dco/c++ to compute
the sensitivity of objective function with respect to flow
variables b)transpose the matrix coefficients and operators
from primal c)hand differentiate all internal and boundary
fluxes for ATC c)assemble them in adjoint driver.

The paper presents the formulation in Sec. 2, followed
by Sec. 3 which presents the discrete fixed-point adjoint
approach. Comparisons of the brute-force and the
fixed-point approaches for validation are shown in Sec. 4.

2 Mathematical Overview

2.1 Incompressible Flows

The Navier-Stokes(NS) governing equations for steady,
laminar incompressible Newtonian fluid flow can be written
as

5.ρUUU = 0 (1)

5.(ρUUUUUU) =−5 p+5· (µUUU) (2)

Using a Picard linearisation, the governing equations
can be expressed in a discretised form by representing
the variables at the control volume faces in terms of cell
centre values. The discretised continuity and momentum
equations can be formulated in matrix view as[

F B
C 0

]
︸ ︷︷ ︸

A

.

[
uuu
p

]
︸ ︷︷ ︸

WWW

=

[
b1
b2

]
︸ ︷︷ ︸

b

(3)

where F, B and C are the convection-diffusion, gradient
and divergence operators. In matrix notation the SIMPLE
algorithm can be summarised as

Myyy = b ;
[

F 0
0 S

]
︸ ︷︷ ︸

M

[
uuu∗

p′

]
=

[
b1−Bp′

b2−Cuuu∗

]
(4)

WWW = Lyyy ;
[

uuu
p

]
=

[
I −D−1B
0 I

]
︸ ︷︷ ︸

L

[
uuu∗

p′

]
(5)

here I is the identity matrix, D−1 is the inverse of diagonal
matrix of the operator F (D−1 = F̃−1) and S is the Schur
complement:

S =−CD−1B (6)

As it is clear in Eqn. 4, the gradient of pressure in the
momentum equation and the velocity divergence in the
pressure equation are treated explicitly on the right hand
side alongside boundary terms. The SIMPLE method can
be considered a right block preconditioner with M and L as
the preconditioning matrices. Having described the matrix
view of SIMPLE algorithm, the algebraic formula of it as a
fixed-point iteration can be obtained as

WWW n+1 =WWW n−LM−1(AWWW n−b), (7)

where WWW represents the flow variables, LM−1 is the
preconditioner and the term (AWWW n − b) is the spatial
residual, R, that is driven to zero by the flow solver.

2



EUROGEN 2015 September 14-16, 2015, Glasgow, UK

2.2 Tangent Linear Differentiation

In the context of shape optimisation, the general discrete
form of NS equations that is solved is of the form

R(WWW ,XXX(α)) = 0, (8)

where XXX is the vector of the computational grid points
coordinates and α are a set of design parameters in
the design process to control the coordinates of grids to
optimise a scalar objective function, J,

α −→ XXX −→ WWW −→ J

To use any gradient-based shape optimisation, the
sensitivity of objective function with respect to the design
variables is needed in each design step,

∂J
∂α

=
∂J
∂WWW

∂WWW
∂XXX

∂XXX
∂α

. (9)

In CFD, the flow solution WWW is implicitly dependent on
the grid coordinates through a set of nonlinear equations
and regarding Eq. 8 one can write

∂R
∂α

=
∂R
∂WWW

ẆWW +
∂R
∂XXX

ẊXX = 0, (10)

where

ẆWW =
∂WWW
∂XXX

ẊXX , ẊXX =
∂XXX
∂α

Although the sensitivity of flow variables, ẆWW , can be
computed with AD tools and in forward mode but the
calculation needs to be repeated for every single design
variable in each design step. That’s why, in gradient-based
shape optimisation applications, in which the number of
design variables is relatively large, the tangent linear is
not an affordable option for gradient calculation. The
corresponding tangent linear differentiation of SIMPLE
algorithm can be formulated as

ẆWW n+1
= ẆWW n−LM−1(AẆWW n− f ), (11)

where

f =− ∂A
∂WWW

ẆWW n−1WWW − ∂A
∂XXX

ẊXX +
∂b
∂α

2.3 Discrete Adjoint Differentiation

Regarding the Eq. 9 and Eq. 10, the cost function sensitivity
calculation can be rewritten in a different way which is
much cheaper computationally compared to tangent linear

∂J
∂α

=− ∂J
∂WWW

[
∂R
∂WWW

]−1
∂R
∂XXX

ẊXX (12)

and an AD tool can compute the sensitivity in
adjoint/reverse mode

∂J
∂α

=−ẊXXT
[

∂R
∂XXX

]T [
∂R
∂WWW

]−T [
∂J
∂WWW

]T

. (13)

In this way any change in design parameter only affects
the left-most term which is evaluated last. Moreover, the
other three terms need only be evaluated once unless there
is a change in functional J or a change in flow field WWW .
Introducing the transpose of adjoint variable as

ν
T =

∂J
∂WWW

[
∂R
∂WWW

]−1

,

and the adjoint equation is obtained as

[
∂R
∂WWW

]T

ν =
∂J
∂WWW

(14)

2.4 Discrete Adjoint of SIMPLE algorithm (brute-force)

It can be shown15 that the automatic differentiation of Eq. 7
in reverse mode leads to

WWW n
= WWW n+1−AT M−T LTWWW n+1

−
[

∂A
∂WWW

]T

M−T LTWWW n+2WWW T

+

[
∂b
∂WWW

]T

M−T LTWWW n+2 (15)

and subject to the final condition which is

WWW N
=

∂J
∂WWW

= g

the adjoint variables can be accumulated using the
following formula15 :

ν =
N−1

∑
m=0

M−T LTWWW m+1 (16)

The general structure of an SIMPLE-type
incompressible solver code which is differentiated

3



EUROGEN 2015 September 14-16, 2015, Glasgow, UK

with an AD tool can be summarised as following steps

call Initialise the f low (WWW )

call Metrics (Normal vectors, volumes, etc.)

call SIMPLE :
Do nIter = 1,mIt

call Momentum Eqn.

call Pressure Eqn.

call U pdate

End DO

call Cost_Func : J

call Cost_Func :
∂J
∂WWW

=WWW N
= g

call SIMPLE :
[

∂R
∂XXX

]T

∑M−T LTWWW

Do nIter = 1,mIt

call U pdate

call Pressure Eqn.

call Momentum Eqn.

End DO

call Metrics : ẊXXT
[

∂R
∂XXX

]T

ν

The adjoint variable can be accumulated during the
reverse SIMPLE loop ()with a small code modification.

Using AD in a brute-force fashion, which was illustrated
above, would generate a sensitivity code that is not
the counterpart of primal fixed-point iteration. Due to
this reason, it can not be used in one-shot optimisation
method which converges flow, gradient and design
variables simultaneously, resulting in further efficiency
gains. Moreover, because of taping/check-pointing of
primal which is needed by AD tools the memory and
runtime demand is high when running large scale industrial
cases.

3 Fixed-Point Discrete Adjoint of SIMPLE algorithm

Alternatively, using AD tool and a new form of manually
assembling the differentiated blocks of code, it is possible
to obtain the discrete adjoint solution of SIMPLE-like
algorithms as a fixed-point iteration. Then the derived
discrete adjoint formulation is proved to have the same
asymptotic convergence rate as the primal code.5 because
the rate of convergence in adjoint equation is governed by
matrix I−M−T LT which its eigenvalues are the same as
its counterpart matrix for primal, I−LM−1. Considering
the adjoint accumulation formula, Eq. 16, with νN = 0, the

adjoint difference can be written as

ν
n−ν

n+1 = M−T LTWWW n+1

= M−T LTWWW n
(WWW N−

N−1

∑
m=n+1

(WWW m+1−WWW m
))

= M−T LT (g−
N−1

∑
m=n+1

(AT M−T LTWWW n+A1

+(
∂A
∂WWW

)T M−T LTWWW n+2WWW T

− (
∂b
∂WWW

)T M−T LTWWW n+2
))

=−M−T LT (AT
ν

n+1− (g− (
∂A
∂WWW

)T
ν

n+2WWW T

+(
∂b
∂WWW

)T
ν

n+2))

(17)

Looking at Eq. 17, the block matrix AT is just the
transpose of the matrix A which has already been calculated
in primal. It means one can use the benefit of having
the matrix A and reassemble its transpose for the adjoint
equation. This saves the memory usage needed for
check-pointing matrix A. The term that has been subtracted
from g is the lagged adjoint variable due to Picard
Linearisation. To solve Eq. 17, the SIMPLE algorithm can
be adapted to be used as a preconditioner for the adjoint
equation.14

The method is implemented in the in-house flow
solver code called GPDE which is written in FORTRAN
language based on cell-centred SIMPLE scheme. The
subroutine spd_conv_di f f in GPDE calculates the internal
and boundary fluxes to build the matrix coefficient
for momentum equation in primal. To compute the
ATC of the adjoint momentum equation, this subroutine
is differentiated with TAPENADE in reverse mode
(spd_conv_di f f _b) to be used in the SIMPLE adjoint
driver. Moreover, the objective function subroutine is
differentiated to calculate the term ∂J

∂WWW . Then, in the adjoint
driver code, the subroutine ob jective_b is called just before
the SIMPLE adjoint loop to add term ’g’ to the right hand
side both momentum and pressure adjoint equations.

4 RESULTS

4.1 Cavity Flow

To aid understanding, the method first was implemented in
a validated basic pressure-correction in-house code written
in the C-language. The source-transformation AD tool
Tapenade1 is used for differentiation. As a test case,
the well-known lid-driven cavity flow with Re = 1000 is
considered. The momentum source term is perturbed at
a specific point and the objective function is defined as
the average of squared velocity magnitude over the whole
domain.

A sample of velocity adjoint over centre of cavity, x =
0.5, is tabulated in table 1 in both methods. As it is clear,

4



EUROGEN 2015 September 14-16, 2015, Glasgow, UK

Fixed-Point Tapenade brute-force
0.0 0.0

-0.000005168 -0.000002527
-0.000043189 -0.000046429
-0.000084630 -0.000085385

... ...
0.000363607 0.000365744
0.000317863 0.000319150
0.000262002 0.000258612
0.000081122 0.000082703

0.0 0.0

Table 1: Velocity adjoint distribution at x = 0.5

the adjoint velocity values gained by the new approach is in
agreement with the brute-force differentiation of the solver
by 4-5 digits after decimal point.

4.2 S-Bended Duct Flow

To verify the method in more complex problems, an internal
laminar flow through a s-bended duct is examined. The
velocity adjoint field on a plane in the middle of the duct for
both methods is shown in figures 1 and 2. The quantitative
comparison will be demonstrated in the final work.

Figure 1: Velocity adjoint field gained by fixed-point
approach

Figure 2: Velocity adjoint field gained by brute-force
approach

5 Conclusion

In this paper it was shown that with some algebraic
manipulation the brute-force differentiation of
SIMPLE-like solver can be transformed to the fixed-point
iteration solution of adjoint equation. The bulk of the
adjoint equation was built by using the transpose of the

primal matrices. The method was tested in an in-house
code. Some subroutines of the primal driver code were
selectively differentiated by TAPENADE AD tool and were
assembled in the adjoint driver which was written very
close to the primal code. The method was verified with the
result of two simple test cases.

The final paper will demonstrate the fixed-point
approach applied to OpenFOAM, with appropriate parts
differentiated either by hand or where possible using the
dco++ AD tool.2 The resulting discrete adjoint solver will
be applied to relevant industrial testcases from the About
Flow project.

6 Acknowledgements

This work is conducted within the About Flow project
(http://aboutflow.sems.qmul.ac.uk) which has received
funding from the European Union’s Seventh Framework
Programme for research, technological development and
demonstration under Grant Agreement No. 317006.

References

[1] Hascoët, L. and Pascual, V. The Tapenade Automatic
Differentiation tool: Principles, Model, and
Specification. ACM Transactions On Mathematical
Software 39(3) (2013).

[2] Lotz, J., Leppkes, K., and Naumann, U. dco/c++
– efficient derivative code by overloading in c++.
Tech. rep. aib-2011-05, RWTH Aachen, (2011).
http://aib.informatik.rwth-aachen.de/2011/2011-05.pdf.

[3] Jameson, A., Martinelli, L., and Pierce, N. Optimum
aerodynamic design using the Navier-Stokes
equations. Theor. Comp. Fluid. Dyn. 10, 213–237
(1998).

[4] Nielsen, E. J. Aerodynamic Design Sensitivities
on an Unstructured Mesh Using the Navier-Stokes
Equations and a Discrete Adjoint Formulation.
PhD thesis, Virginia Polytechnic Institute and State
University, December (1998).

[5] Giles, M. B., Duta, M. C., Müller, J.-D., and Pierce,
N. A. Algorithm developments for discrete adjoint
methods. AIAA Journal 41(2), 198–205 (2003).

[6] Xu, S., Radford, D., Meyer, M., and Müller,
J.-D. Stabilisation of discrete steady adjoint solvers.
submitted (2014).

[7] Patankar, S. V. and Spalding, D. A calculation
procedure for heat, mass and momentum transfer in
three-dimensional parabolic flow. Int. J. of Heat and
Mass Transfer 15(10), 1787–1806 (1972).

[8] Nemili, A., Özkaya, E., Gauger, N., Carnarius, A., and
Thiele, F. Automatic generation of discrete adjoints
for unsteady optimal flow control. In ECCOMAS
CFD & Optimization, Tuncer, T., editor, (2011). ISBN
978-605-61427-4-1, No. 2011-043.

5



EUROGEN 2015 September 14-16, 2015, Glasgow, UK

[9] Jones, D. and Müller, J.-D. Cfd development with
automatic differentiation. 50th AIAA Aerospace
Sciences Meeting AIAA-2012-573 (2012).

[10] Othmer, C. A continuous adjoint formulation for the
computation of topological and surface sensitivities of
ducted flows. 58(8), 861–877 (2008).

[11] Othmer, C. Adjoint methods for car aerodynamics. J.
Math. Ind. 14(6) (2014).

[12] Towara, M., Sen, A., and Naumann, U. An effective
discrete adjoint model for openfoam. In OPT-i: An
International Conference on Engineering and Applied
Sciences Optimization, Papadrakakis, M., Karlaftis,
M., and Lagaros, N., editors, 1994. National Technical
University of Athens, (2014).

[13] Sen, A., Towara, M., and Naumann, U. A discrete
adjoint version of an unsteady incompressible solver
for openfoam using algorithmic differentiation. In
6th European Conference on Computational Fluid
Dynamics, nate, E. O., Oliver, J., and Huerta, A.,
editors, 5014–5023. ECCOMAS, (2014).

[14] Stück, A. and Rung, T. Adjoint complement to viscous
finite-volume pressure-correction methods. Journal of
Computer Physics 248, 402 – 419 (2013).

[15] Giles, M. On the iterative solution of adjoint
equations. In Automatic Differentiation of
Algorithms, Corliss, G., Faure, C., Griewank,
A., Hascoët, L., and Naumann, U., editors, 145–151.
Springer-Verlag New York, Inc., New York, NY, USA
(2002).

6


