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Abstract 

 

This paper presents the development and 

application of the truncated Newton (TN) method for 

shape optimization problems. The development is 

made for problems governed by laminar flows of 

incompressible fluids though its extension to 

turbulent flow is straightforward. The method was 

developed in OpenFOAM
®
 with the aim to stress the 

advantages over standard gradient-based optimization 

algorithms. The Newton equations are solved using 

the conjugate gradient (CG) method which requires 

the computation of the product of the Hessian of the 

objective function with a user-defined number of 

vectors, escaping thus the need for computing the 

Hessian itself. The latter has a computational cost 

that scales with the number of design variables and 

may become unaffordable in large-scale problems 

with many design variables. A combination of the 

continuous adjoint method and direct differentiation 

is used to compute all Hessian-vector products. The 

programmed method is used to optimize the sidewall 

shapes of a divergent duct for minimum total pressure 

losses and the shape of a 2D airfoil for minimum 

drag.   

 

Introduction 

 

In aerodynamic shape optimization, the adjoint 

approach for the computation of the objective 

function gradient w.r.t the N design variables has a 

cost which is independent of the value of N and, for 

this reason, is in widespread use
1, 2, 3

. On the other 

hand, Newton optimization algorithms could lead to 

faster convergence (at least in terms of optimization 

cycles) than conventional optimization methods 

exclusively relying upon the gradient. However the 

cost for computing the required Hessian matrix, with 

the best available method
4
, scales with the number of 

design parameters. This is the main reason for which 

the application of (exact) Newton methods is 

restricted to problems with just a few design 

variables. A viable alternative is the “exactly 

initialized quasi-Newton method” according to which 

the exact Hessian is computed only in the first 

optimization cycle and is then approximately 

updated, as proposed by some of the authors
5
. 

Though this approach may become much more 

efficient than the Newton method, the computation of 

the Hessian, even once, could be prohibitive in 

problems with many design variables. For this kind 

of problems, the TN method could be used instead. In 

the TN method, the Newton system of equations is 

solved iteratively through the CG algorithm requiring 

only the computation of Hessian-vector products. An 

approach for computing these products, based on the 

combination of the continuous adjoint method and 

direct differentiation, is presented herein, for use in 

shape optimization problems. This is an extension of 

a previous work
6
 solving topology optimization 

problems using the TN method which proved to be 

very efficient. In the full paper, two cases regarding a 

divergent duct and an isolated airfoil will be 

presented. For the needs of these cases, two objective 

functions (volume-averaged total pressure losses and 

drag) are worked out. Some preliminary results are 

included in this extended abstract. 
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The TN Method 

 

Below, the TN method is developed for a general 

objective function 𝐹. The Newton method accelerates 

the convergence of the optimization algorithm
 

in 

which the design variables 𝑏𝑖(𝑖 = 1,… , 𝑁) are 

updated by solving the Newton’s system:  

 
𝛿2𝐹

𝛿𝑏𝑖𝛿𝑏𝑗
𝛥𝑏𝑗 = −

𝛿𝐹

𝛿𝑏𝑖
                                                     (1) 

 

𝑏𝑗
𝑛𝑒𝑤 = 𝑏𝑗

𝑜𝑙𝑑 + ∆𝑏𝑗   𝑗 = 1, … , 𝑁 

 

While the r.h.s of equation (1) can be computed 

via the adjoint method (since this is nothing more 

than the gradient of 𝐹), the Newton method requires 

the computation of the Hessian which, at the best 

case scenario, has a computational cost that scales 

with the number of the design parameters (N); this, in 

turn, makes it too expensive for large scale 

optimization problems. The TN method relies upon 

the solution of equation (1), which resembles the 

classic linear system of equations 𝐀𝐱 = 𝐪, using the 

CG method. 

Though this paper relies exclusively upon the CG 

method, any other iterative algorithm that requires 

only Hessian-vector products can be embodied in the 

TN algorithm. The CG algorithm for solving the 

system of linear equations 𝐀𝐱 = 𝐪 is schematically 

given below:   

 

       𝑘                       0 

      x                        init() 

𝑟𝑛
0                      𝐴𝑛𝑙𝑥𝑙

0 − 𝑞𝑛
0;  𝑠𝑛               - 𝑟𝑛

0 

while 𝑟𝑘 ≠ 0 and 𝑘 ≤ 𝑀𝐶𝐺  do 

 𝑤𝑛                   𝐴𝑛𝑙𝑠𝑙 

η                       
(𝑟𝑛

𝑘)
𝑇
𝑟𝑛
𝑘

𝑠𝑘
𝑇 𝑤𝑘

 

𝑥𝑙                        𝑥𝑙+ η𝑠𝑙 
𝑟𝑙
𝑘+1                 𝑟𝑙

𝑘 - η 𝑤𝑙  

𝛽                      
(𝑟𝑛

𝑘+1)
𝑇
𝑟𝑛
𝑘+1

(𝑟𝑘
𝑘)
𝑇
𝑟𝑘
𝑘

 

𝑠𝑙                       𝑟𝑙
𝑘+1 + 𝛽𝑠𝑙 

𝑘                      𝑘 + 1 

end while 

 

In the above algorithm, k is the iteration counter, 

r denotes the residual vector, η is the step and MCG is 

the number of CG cycles which is user-defined and 

should be much smaller than the number of 

unknowns. In the above CG algorithm, each iteration 

costs, practically, as much as the computation of the 

product of A and s. 

In CFD-based optimization, inspired by the 

previous algorithm, one optimization loop which 

employs the TN method comprises the following 

main steps: 

 

1- Solve the flow equations. 

2-Compute 
δF

δbi
 (for all i) by solving the adjoint 

equations. 

3- Solve equation (1) by performing MCG 

iterations, where each iteration involves the 

computation of the product of the Hessian matrix and 

the s vector. 

4-Update the design variables. 

Step 1 and 2 have, more or less, the same CPU 

cost. To assess the efficiency of the TN method, the 

cost of step 3 should be kept as low as possible. 

 

Method Formulation in Fluid Mechanics 

 

To present the formulation of the TN method in a 

shape optimization problem governed by the Navier-

Stokes equations, let us consider an internal flow case 

in which a shape that gives the minimum volume–

averaged total pressure losses between the inlet (𝑆𝐼) 
and outlet (𝑆𝑂) of the domain is sought. The 

corresponding objective function reads 

 

Fpt = - ∫ ( +
1

2
 

  
 𝑘

2)  𝑖 𝑖 𝑆 - ∫ ( +
1

2  
 𝑘

2) 

 𝑖 𝑖 𝑆 
 

where  𝑖 are the components of the outwards unit 

normal vector at the boundaries. It is meant that the 

volume flow rate is fixed, by defining a fixed 

velocity profile along 𝑆𝐼 . 
Whatever the shape to be designed becomes, the 

flow equations of an incompressible laminar flow,  

 

 𝑝 = - 
 𝑣𝑗

 𝑥𝑗
= 0                                (2.a) 

 𝑖
𝑣 =  𝑗

 𝑣𝑖

 𝑥𝑗
+ 

 𝑝

 𝑥𝑖
 - 

 

 𝑥𝑗
[ (

 𝑣𝑖

 𝑥𝑗
+

 𝑣𝑗

 𝑥𝑖
)] = 0           (2.b) 

 

must be satisfied. Here,  𝑖 are the velocity 

components,   is the static pressure divided by the 

constant density and   is the constant bulk viscosity. 

The continuous adjoint method is used to 

compute the gradient of 𝐹 required by eq. (1). Based 

on a continuous adjoint development similar to those 

presented in
7
, the field adjoint PDEs, namely 

 

 𝑞  = - 
 𝑢𝑗

 𝑥𝑗
= 0                            (3.a) 

 𝑖
𝑢 =  𝑗

 𝑣𝑗

 𝑥𝑖
 – 

 

 𝑥𝑗
[ (

 𝑢𝑖

 𝑥𝑗
+

 𝑢𝑗

 𝑥𝑖
)] 

 - 
 (𝑣𝑗𝑢𝑖)

 𝑥𝑗
 +

 𝑞

 𝑥𝑖
= 0                         (3.b) 
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(where  𝑖 are the adjoint velocity components and 𝑞 

the adjoint pressure) must be discretized and solved. 

Eqs. (3) are associated with the adjoint boundary 

conditions which are omitted here in the interest of 

space. 

Solving the adjoint PDEs, just after the solution 

of the flow (primal) PDEs, provides all we need to 

compute the sensitivity derivatives of 𝐹. If 𝐹 = 𝐹𝑝𝑡, 

these are given by 

 
𝛿𝐹

𝛿𝑏𝑛
= −∫ [ (

 𝑢𝑖

 𝑥𝑗
+

 𝑢𝑗

 𝑥𝑖
) 𝑗 − 𝑞 𝑖]  

 𝑣𝑖

 𝑥𝑘

𝛿𝑥𝑘

𝛿𝑏
 𝑆               (4) 

 

Having computed the first-order derivatives of 𝐹 

via the adjoint method, the next steps are those 

leading to the computation of the product of the 

Hessian matrix and any vector s. To this end, eq. (4) 

is differentiated once more w.r.t. the design variables 

and, then, multiplied by s. We, thus, get 

 
 2𝐹

 𝑏𝑙 𝑏𝑛
𝑠𝑙 = − ∫ [ (

 𝑢𝑖

 𝑥𝑗
+

 𝑢𝑗

 𝑥𝑖
) − 𝑞̅ 𝑖

𝑗]  𝑗
  

  𝑖
 𝑥𝑘

 
𝛿𝑥𝑘

𝛿𝑏𝑛
 𝑆 

− ∫[ 
 

 𝑥𝑚
(
 𝑢𝑖

 𝑥𝑗
+

 𝑢𝑗

 𝑥𝑖
) −

 𝑞

 𝑥𝑚
 𝑖

𝑗

]  𝑗
 𝑥𝑚
 𝑏𝑙

  

𝑠𝑙
  𝑖
 𝑥𝑘

 
𝛿𝑥𝑘

𝛿𝑏𝑛
 𝑆 

− ∫[ (
 𝑢𝑖

 𝑥𝑗
+

 𝑢𝑗

 𝑥𝑖
) − 𝑞 𝑖

𝑗]  𝑗
  

  ̅𝑖
 𝑥𝑘

 
𝛿𝑥𝑘

𝛿𝑏𝑛
 𝑆 

−∫ * (  𝑖
  𝑗
+

  𝑗

  𝑖
) − 𝑞 𝑖

𝑗+  𝑗  

 2𝑣𝑖

 𝑥𝑚 𝑥𝑘
 
𝛿𝑥𝑚

𝛿𝑏𝑙
𝑠𝑙
  𝑘
  𝑛
 𝑆  

                    

−∫ * (  𝑖
  𝑗
+

  𝑗

  𝑖
) − 𝑞 𝑖

𝑗+
  

 𝑣𝑖

 𝑥𝑘
   𝑘
  𝑛

𝛿(𝑛𝑗𝑑 )

𝛿𝑏𝑙
𝑠𝑙                  (5) 

 

where 

 
  𝑖
 𝑏𝑙

𝑠𝑙  =     ̅ ,    
  𝑖
 𝑏𝑙

𝑠𝑙  =     ̅ ,    
 𝑞

 𝑏𝑙
𝑠𝑙  =   𝑞 ̅  

 

To compute the overlined fields, the flow and adjoint 

equations must be differentiated w.r.t. the design 

variables (this process is usually referred to as Direct 

Differentiation or DD) and, then, multiplied by 𝑠𝑙. It 

is worth noting that the computation of 
 𝑢𝑖

 𝑏𝑙
 and 

 𝑣𝑖

 𝑏𝑙
  

using DD would require N equivalent flow solutions 

(EFS; this is approximately the cost for solving the 

flow PDEs). Since, however, only the projection of 

these fields to the vector s are needed, two instead of 

2N systems of PDEs must be solved. The DD of eqs. 

(2) and (3) and the subsequent contraction with s 

yields the following systems of PDEs: 

 

 𝑝̅= −
 𝑣̅𝑗

 𝑥𝑗
= 0                           (6.a) 

 𝑖
𝑣̅ =  ̅𝑗

 𝑣𝑖

 𝑥𝑗
+ 𝑗

 𝑣̅𝑖

 𝑥𝑗
+

 𝑝̅

 𝑥𝑖
−

 

 𝑥𝑗
* (  ̅𝑖

  𝑗
+

  ̅𝑗

  𝑖
)+ = 0        (6.b) 

and 

 

 𝑞̅= −
 𝑢𝑗

 𝑥𝑗
= 0                                       (7.a) 

 𝑖
𝑣̅ =  ̅𝑗

 𝑣𝑗

 𝑥𝑖
+  𝑗

 𝑣̅𝑗

 𝑥𝑖
−  𝑗

 𝑢𝑖

 𝑥𝑗
−  ̅𝑗

 𝑢𝑖

 𝑥𝑗
+

 𝑞̅

 𝑥𝑖
−

 

 𝑥𝑗
* (  ̅𝑖

  𝑗
+

  ̅𝑗

  𝑖
)+ = 0                (7.b) 

 

As mentioned above, the cost of solving the 

system of eqs.  (6) & (7) is 2EFS (overall) and this 

must be performed 𝑀𝐶𝐺  times within each 

optimization cycle. By adding the cost of solving the 

flow and adjoint PDEs (once per cycle), the cost of 

each cycle becomes equal to (2+2𝑀𝐶𝐺) EFS. 

We may now summarize the TN-based algorithm:  

  

𝑘                                      0 

𝑏𝑗                                     init() 

While 𝑘 ≤𝑘𝑚 𝑥 (Outer loop/Optimization cycles) do 

 𝑖 ,                                  Flow equations (2) 

 𝑖 , 𝑞                               Adjoint equations (3) 

∆𝑏𝑗
0                               init(0) 

𝑟𝑗
0 = −

𝛿𝐹

𝛿𝑏𝑗
                   Gradient expression (4) 

𝑠𝑗                                  𝑟𝑗
0 

m                                  0 

while 𝑟𝑚 ≠ 0 and m≤𝑀𝐶𝐺(Inner loop/CG                                                                                                           

steps) do 

               
 𝑣𝑖

 𝑏𝑛
𝑠𝑛                        DD of flow equations(6) 

              
 𝑢𝑖

 𝑏𝑛
𝑠𝑛                        DD of adjoint equations(7) 

               𝑖 =
𝛿2𝐹

𝛿𝑏𝑖𝛿𝑏𝑗
𝑠𝑗               Projected Hessian(5) 

               η                              
𝑟𝑖
𝑚𝑟𝑖

𝑚

𝑠𝑘 𝑘
 

                 ∆𝑏𝑗
𝑚+1                    ∆𝑏𝑗

𝑚 +  𝑠𝑗 

                 𝑟𝑗
𝑚+1                       𝑟𝑗

𝑚 −   𝑗 

               𝛽                             
𝑟𝑖
𝑚+1𝑟𝑖

𝑚+1

𝑟𝑘
𝑚𝑟𝑘

𝑚  

               𝑠𝑗                            𝑟𝑗
𝑚+1 + 𝛽𝑠𝑗 

               m                            m+1 

           end while 

𝑏𝑗                                           𝑏𝑗 + ∆𝑏𝑗 

k                                            k+1 

end while 

 

Applications 

 

The curved wall of a symmetrical divergent duct 

was parameterized using Bezier-Berstein control 

points and the shape was optimized so as to minimize 

the total pressure losses for the incompressible flow 

with Reynolds number equal to 1000. The 

characteristic length for computing the Reynolds 
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number is equal to the inlet diameter. 

The initial and optimized shapes of the divergent 

duct for minimum total pressure losses are shown in 

figure 1. 

Figure 1: Total pressure in the initial (upper half) 

and optimized (lower half) part of the duct. 

 

To validate the accuracy with which the adjoint 

method computes the gradient, a comparison with 

sensitivity derivatives computed using (costly) finite 

differences is performed in figure 2.   

 

     Figure 2: Comparison of the computed 

sensitivity derivatives with respect to the coordinates 

of the control points parameterizing the curved walls 

of the duct between adjoint and finite differences. 

 

As shown in figure 3, the total pressure losses in 

the optimized shape decreases compared to that of 

the initial shape. 

More detailed presentation of the obtained results 

as well as results for the second case (isolated airfoil) 

are deferred to the full paper. In the full paper, 

emphasis will be laid on the gain offered by the use 

of TN in shape optimization problem.  

 

 

 

 

 

 

Figure  3: Comparison of the volume average 

total pressure losses at various transversal positions, 

between the initial and optimized shape. 
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