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Summary

Mesh adaptation using r-refinement techniques is applied during iterative solution process in order to achieve an improved
mesh. The geometric multigrid technique of the flow solver is exploited for error estimation, from which unweighted
Hessian as well as adjoint-weighted adaptation sensors are implemented and evaluated. The linear elasticity mesh
deformation methodology is applied to relocate mesh nodes while keeping mesh quality at an acceptable level. Results
are presented for a fuel efficient vehicle test case in 3D viscous flow using adapted and uniformly refined meshes.
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1 Introduction

Numerical optimisation using CFD and adjoint methods
is an important area of CFD methods development and
industrial application. Depending on the optimisation
algorithm the computational cost of the optimal solution is
between 5 and 100 times the cost of a single CFD evaluation
with fixed parameters. Minimising the computational cost
of the simulation for a given level of accuracy is hence an
important aspect to obtain an efficient optimisation method.

Solution-adaptive mesh refinement is a recognised
approach to achieve this. The main challenges are in the
definition of an adaptation indicator that prescribes the local
size and possibly anisotropy of the discretisation molecule,
which in turn needs to be based on a local error estimator.

Another important aspect is to develop efficient mesh
adaptation techniques that then modify the mesh to
respond to the adaptation sensor, while maintaining mesh
quality. Four groups of mesh adaptation techniques can
be distinguished: h-refinement1 locally adds or removes
cells, typically done in a hierarchic fashion to maintain
locality; r-refinement2 retains the topology of the mesh but
relocates nodes, hence avoids expensive data movement
p-refinement3 increases the order of accuracy of the

discretisation, which is difficult to achieve for typical finite
volume methods; and mesh-regeneration4 produces a new
mesh which avoids strong gradients in the cell sizes, but
requires interpolation of the solution.

Here we focus on r-refinement due to its low impact
on the data structure and parallel partitioning, as well as
its low computational cost making it suitable for frequent
application in one-shot design algorithms5 and unsteady
flows.

The paper is structured in the following manner. First
the methods for discretisation error estimation as well as
the currently used indicators are discussed in Sec. 2. The
refinement methodology is described in Sec. 3. Sec. 4
presents the in-house solver and Sec. 5 the test case
considered concluding with discussion in Sec. 6.

2 Error estimation and indicators

2.1 Error estimation

Assuming that the physical model used in computations is
valid, the overall simulation error is related to discretisation
error - the difference between the exact (continuous) and
the discrete solution. The exact quantification of this error
requires the knowledge of exact solution to the continuous
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problem, which for most cases in CFD, especially those of
industrial relevance is unknown. That raises the question
on how the error could be approximated. The most popular
methods of error estimation are:

- the feature based methods that link gradients and
the Hessian of user-specified flow variables to the
discretisation error,

- output based methods,1, 2, 6–8 which quantify the error
of an integral quantity of interest L (e.g. lift or drag)
with the use of adjoint solution.

In both cases the starting point for error approximation
is the expansion of the specified quantity into Taylor series.
For gradient/Hessian-based estimation the solution of the
system of flow equations (9) is expanded as presented in
Eq. (1).

u = uH +
∂u
∂x

∣∣∣∣
H
(H)+ . . . (1)

where u is e.g. a chosen scalar variable from the exact
solution vector U of the system of flow equations (9) and
uH the approximate solution variable on the discretised
space with characteristic mesh size H. From that, an
approximation for the error can be derived for gradient (2)
and Hessian (3) error estimators.

ε∇ ≈ H∇u (2)

ε
∇2 ≈ HT (

∇
2u
)

H (3)

The starting point for output-based error estimation
using the adjoint solution is the expansion of integral
quantity L (e.g. lift or drag) into Taylor series (Eq. (4)),

Lh(Uh) = Lh(UH
h )+

∂Lh

∂Uh

∣∣∣∣
UH

h

(
Uh−UH

h
)
+ . . . (4)

where U is an exact solution to the system of Partial
Differential Equations under consideration (e.g. (9)). The
superscript H and subscript h refer to a characteristic length
in coarse and refined discrete spaces, respectively (e.g. edge
length). In this manner UH is a solution on the coarse and
Uh on the refined grid. In case h→ 0, the exact solution
is reached. The notation UH

h refers to the approximate
solution on the coarse grid H expressed on the refined
mesh h via a carefully chosen reconstruction or projection
operator IH

h .1 The discretisation error can the be estimated
as (see e.g. Venditti1 or Fidkowski6 for details of the
derivation)

Lh(Uh)≈ Lh(UH
h )−

(
vh|UH

h

)T
Rh(UH

h ) (5)

where v is the adjoint variable (10) and R is the residual of
flow equations (9).

Eqs. (1) and (4) can be used to either calculate an exact
discretisation error when the solution Uh|h→0 is known,
or to estimate the error when approximate solutions are

evaluated i.e. one on the coarse mesh H and a second on
the refined mesh h. As was mentioned already, the exact
solution is unknown and computationally not achievable.
However, when properly used, the Eq. (1) and (4) can be
successfully applied for discretisation error estimation as
the leading error terms are usually associated with the first
and second derivative terms of Taylor expansion series.
The key requirement is that the discretisation space H has
to be fine enough in order to capture relevant flow physics
and for the solution UH to be within the asymptotic range.1

In this paper the set of multi-grid meshes used in the
in-house flow solver described briefly in section 4 will be
reused for the error estimation procedure extended from the
work of Venditi1 or Fidkowski.6

2.2 Gradient/Hessian-based indicator

This type of indicators are broadly used and available in
most commercial solvers (e.g. ANSYS Fluent1). They are
based either on the error estimated with Eqs. (2) and (3),
or mixed weighted approaches for a chosen flow quantity
(e.g. pressure). The final indicator Iei j is calculated for mesh
edges ei j by taking the average of gradient or Hessian from
two forming nodes i, j (Eqs. (6), (7)).

I∇ei j =

∣∣∣∣∇ui +∇u j

2
ei j

∣∣∣∣ (6)

I
∇2ei j =

∣∣eT
i j
(
∇

2uei j

)
ei j

∣∣ (7)

The advantage of this approach is its simplicity and low
computational cost. However in practical application the
accuracy improvement is not always achieved.2 Moreover,
What is more this these indicators act locally without taking
into account more complex flow dependencies.9

2.3 Adjoint-weighted indicator

The main idea behind using adjoint based/weighted
indicators is to quantify the effect that a local error has
on the objective function, hence promising to overcome
problems related to the solution-based indicators. The
adjoint solution allows to locate areas in the computational
domain that have a strong influence on the objective
function of interest (e.g. lift, drag).

In that manner not only the mesh is optimised with
respect to defined cost function of interest, but also the
information provided has a more global nature i.e. the
influence of various flow features on each other is well
predicted (opposed to local action of gradient-based
indicators).2 That in principle can lead to optimal
ratio of achieved cost function estimation accuracy to
computational cost and make adjoint based sensors a very
good candidate for adaptation indicator.

1http://www.ansys.com
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The successful application of adjoint weighted sensors
was done by e.g. Fidkowski6 on a range of inviscid, laminar
and RANS2 cases.

3 R-refinement methodology

The r-refinement technique is used to drive the adaptation
process. There are several deformation algorithms broadly
used in CFD field, amongst which the most popular are
spring analogy and linear elasticity technique.
Spring analogy or Laplacian smoothing is attractive due
to its low cost and simple implementation, but it usually
fails when larger deformations are required and in particular
when high aspect ratio cells are present in the mesh. It can
easily generate negative volumes10 and lead to failure of the
adaptation procedure.

In order to keep the mesh quality at an acceptable level
and to decrease the likelihood of creating negative volumes,
the linear elasticity formulation (8) is used here.10, 11 The
adaptation procedure can be successfully done by applying
non-zero body force f as described by e.g. Dwight.12

∇σ = f on Omega, (8)

where f is some body force, σ is a stress tensor which is a
function of strain tensor ε and Omega is the computational
domain. The detailed description of how the term f is
derived from the adaptation sensors will be presented in the
final paper.

4 Flow and adjoint solver

For the purpose of this work the in-house flow and adjoint
solver mgOpt13 was used. mgOpt is a typical finite
volume, vertex-centred flow solver with an edge-based data
structure. It is able to simulate both inviscid as well as
viscous flows, for the later the Spalart Allmaras turbulence
model14 is used. The system of equations can be written in
short notation (9)

R(U,x) = 0 (9)

Where R stand for residuals for each out of 5/6
(inviscid/viscous) equations that are drive to zero and U
and x are the vector of flow variables and mesh coordinates
respectively. The equations are advanced in time using an
implicit Runge-Kutta scheme with multi-grid acceleration
on the outside and a GMRES solver on the inside15

The discrete adjoint solver is derived using automatic
differentiation via source transformation with the AD tool
Tapenade.16 The adjoint system (10) is obtained in a
semi-automatic fashion, i.e. first the user selected routines
are differentiated and then appropriately assembled using
hand-written drivers.13, 17 The first term in Eq. (10) is the
Jacobian of the system (9), v is a vector of adjoint variables
and the last term is the so called adjoint source term.(

∂R
∂U

)T

v =
(

∂L
∂U

)T

(10)

2Reynolds Averaged Navier-Stokes

The system (10) is solved by reusing iterative solver from
primal code.

5 Test case

The geometry of a fuel efficient vehicle shown in Fig. 1
designed at Warsaw University of Technology is used as a
test case. The car is design by the members of Students
Association of Vehicle Aerodynamics3 and take part in
the international Shell Eco-marathon competition4. The
engineering quantity of interest is the total drag force.

Figure 1: Geometry of fuel efficient vehicle.

The test case is a realistic three dimensional case
with relatively complex multi-body shape. In order to
capture physics properly the viscous flow solver of mgOpt
in-house code is used. The initial flow analysis reveals
presence of complex flow features at the intersection
between vehicle main body and wheel support (figure 2),
the so called horse-shoe vortex. It has a potential to be a
good test for adaptation sensors and r-refinement algorithm.

The initial mesh created for presented geometry will be
(approximately) uniformly distributed at the vehicle surface
and inside the computational domain in the vicinity of the
vehicle. The more refined boundary layer - in the normal
surface direction, will be created with prism elements.
It is expected that the refinement algorithm will try to
relocate mesh towards the wheel support and regions of
high geometrical curvature of the concept-car where the
vortex from Fig. 1 is formed. The changes in estimated error
will be gathered at each r-refinement step and presented on
the graph. Additionally the attempt to generate uniformly
refined mesh around the vehicle with the target error similar
to one estimated will be made and the computational cost
compared to r-refined grid.

3http://www.skap.meil.pw.edu.pl/
4http://www.shell.com/global/environment-society/ecomarathon.html
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Figure 2: Horse shoe vortex.

6 Discussion

The geometric multigrid method is an integral part of
the in-house mgOpt code used in this work. Having a
geometric multi-grid method at our disposal suggest to use
the difference between coarse and fine grids as embodied
in the multi-grid right-hand side correction term as an error
estimator and to perform adjoint driven mesh adaptation.

The analysis and comparison between various sensors
amongst those mentioned in section 2 is performed on
a realistic concept-car test case. While performing the
comparison and analysing the result of various adaptation
indicators the author will try to come up with alternative
ways of defining adjoint based sensors with a main goal to
achieve even better indication for adaptation process.
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