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Summary

This paper is concerned with the use of the unsteady continuous adjoint method for optimizing an active flow control
system based on pulsating jets. The amplitudes, time-phases, period and locations of the jets are used as design variables.
Without loss in generality, the objective functions this paper is dealing with are the time-averaged squared lift and drag.
Whenever period is among the designing variables, the terms resulting from the application of the Leibniz theorem in
time are carefully taken into account in the derivation of the expression for the sensitivity derivatives. Their contribution
together with the role of the bounds of the time-integrationare investigated. The flow around a cylinder together with a
less costly mathematical problem, sharing the same features with the flow control problem, are presented.
Keywords: Unsteady continuous adjoint method, active flow control, pulsating jets

1 Introduction

Active flow control is an effective way to control the
boundary layer development so as to avoid or delay
separation. In literature, pulsating or synthetic jets have
been used to control internal and external flows1. The
optimal values of the actuation parameters can be computed
using a gradient-based optimization method supported by
the continuous or discrete adjoint method.

This paper is dealing with the unsteady continuous
adjoint method2, in which the adjoint equations and the
sensitivity derivatives are derived by differentiating the
objective function augmented by the field and time integral
of the product of the flow (state) equations and the
adjoint variables. The adjoint equations are discretized
and numerically solved to compute the time-varying adjoint
fields and, then, the sensitivity derivatives.

This paper focuses on the development of the unsteady
continuous adjoint for the optimization of the flow control
around a cylinder, though findings can be generalized
to industrial cases. Compared to the existing literature,
the studied cases involve the jets period and locations as
additional design variables.

In previous work by the authors3, the optimal locations
of the jets were selected, according to the computed
sensitivity map, at the boundary areas with the highest
potential for improvement, without running an optimization
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loop for them. In this paper, the jets locations are among
the design variables and their values are updated at each
optimization cycle. This is why a new expression for
the jets velocities, which can be differentiated w.r.t. their
location, is used.

Having the jets period among the design variable
requires a careful treatment. When the jets act on the
cylinder, the flow period becomes equal to the jets period.
In the continuous adjoint formulation, if the jets period is
to be optimized, the Leibniz theorem is applied leading
to terms depending on the limits of the time integral
contributing to the objective function. A term-by-term
analysis that helps the reader understand the impact of these
terms on the gradient and whether the latter depends on
the starting instant of the integration, is carried out. The
optimization cases aim at minimizing mean squared drag or
lift, with various combinations of the amplitudes, phases,
period and/or locations of jets as design variables. Since,
for a thorough analysis, we have good reasons to keep
the costs as low as possible, a representative mathematical
problem was solved too; this problem sheds light to the
role and numerical implication of all terms appearing in the
sensitivity derivative expression.

2 Flow model

The flow is laminar, modeled by the Navier-Stokes
equations for incompressible flows, namely

Rp =−
∂vi

∂xi
= 0 (1)
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Rv
i =

∂vi

∂ t
+v j

∂vi

∂x j
+

∂ p
∂xi

−
∂

∂x j

[

ν
(

∂vi

∂x j
+

∂v j

∂xi

)]

= 0

(2)

where vi , i = 1,2(3) and p stand for the velocity
components and the static pressure divided by the density,
respectively andν is the bulk viscocity. Repeated indices
imply summation, unless stated otherwise.

2.1 Velocity expression for fixed jets

The velocity vectors along the body surfaceΓw are either
zero (solid wall) or equal to those of the imposed jets. In the
controlled case, with superscript k denoting points where
pulsating jets are applied, the corresponding jet velocity
components are

vk
i = Ak

[

sin

(
2π

Tjets
(t − tk

0)

)

−1

]

ni , i = 1,2(3) (3)

whereAk is the amplitude andtk
0 is the time-phase of thekth

jet velocity,Tjets is the common for all jets period andni are
the components of the unit vector normal to the boundary.
The direction of~n is such that a positive amplitudeAk

corresponds to blowing whereas a negative one to suction.

2.2 An alternative expression for jets velocities

In case jet locations are among the design variables a
different way of expressing the jet velocity must be used.
So their amplitudes are defined as a function of the
angular locations along the cylinder circumferenceφ of
their centers, namely

vi (φ) = A⋆ (φ)
[

sin

(
2π(t − t0)

Tjets

)

−1

]

ni , i = 1,2(3) (4)

where 06 φ 6 π, since only the top-half cylinder
circumference is controlled and, then, mirrored to the
bottom-half, and

A⋆ (φ) =
Njets

∑
k=1

Akeβ k(φ) , β k (φ) =−

(
φ −φ k

)2

z
(5)

All jets act in the normal to the surface direction. In
eq. 5, φ k is the angular location of each jet along the
cylinder circumference andz is a constant related to the
angular width of each jet slot. According to eq. 4, the fluid
velocity on the cylinder circumference is equal to either
zero (solid wall) or the local jet velocity, depending on the
φ value. The great advantage of eq. 4, compared to eq. 3, is
that the former is differentiable w.r.t. toφ k.

3 Flow Control Optimization using Continuous
Adjoint

This paper is dealing with the minimization of (the half of)
the time-averaged squared lift or drag. Both objectives are
cast in the form of the same objective function

F =
1

2T

∫ ă+T

ă
g2 dt (6)

where

g=

∫

Γw

[

−ν
(

∂vi

∂x j
+

∂v j

∂xi

)

n j + pni −
∣
∣v jn j

∣
∣vi

]

r idΓ (7)

Here, r i are the components of a unit vector aligned
with (drag) or being normal to (lift) the farfield velocity
vector and ˘a is the user-defined starting instant of the time
integration in eq. 6. In eq. 7, the last term expresses the
momentum effect of jets acting on the cylinder. In periodic
flows, the objective function value and the corresponding
sensitivity derivatives should be independent of ˘a; among
other, this paper investigates the role of the ˘a value in the
gradient ofF , computed by the continuous adjoint method,
and presents some interesting findings.

The augmented objective functionL is defined as

L = F +
∫

T

∫

Ω
uiR

v
i dΩdt+

∫

T

∫

Ω
qRpdΩdt (8)

where ui and q are the adjoint to thevi and p fields,
respectively. Next step is to compute the variation in
L w.r.t. the design variables, namelyAk, tk

0 and Tjets.
Hereafter, symbol

∫

T stands for
∫ ă+T

ă .
Unless jets intensity is negligible, the flow periodT is

determined by the jets period,T = Tjets. This is why, in
what follows, symbolT is used instead ofTjets. In eq. 6,
the upper bound of the time integration is a function ofT
and, therefore, the Leibniz theorem must be applied for the
differentiation ofL, if T is considered as one of the design
variablesbn.

The variation ofL w.r.t. bn becomes

δL
δbn

=
1
T

∫

T
g

∂g
∂bn

dt+

[
1

2T
g2

∣
∣
∣
∣
t=ă+T

−
1

2T2

∫

T
g2dt

]
δT
δbn

+
∫

T

∫

Ω
ui

∂Rv
i

∂bn
dΩdt+

∫

T

∫

Ω
q

∂Rp

∂bn
dΩdt (9)

The unsteady field adjoint equations4 result by making
the coefficients of∂vi

∂bn
(adjoint momentum equations) and

∂ p
∂bn

(adjoint continuity equation), in the field integrals of
eq. 9, equal to zero and yield

−
∂ui

∂xi
= 0 (10)

−
∂ui

∂ t
−v j

∂ui

∂x j
+u j

∂v j

∂xi
−

∂
∂x j

[

ν
(

∂ui

∂x j
+

∂u j

∂xi

)]

+
∂q
∂x j

= 0 (11)

None of eqs. 10 and 11 is affected by the selected objective
function, sinceF is free of field integrals.
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After satisfying the field adjoint equations, the
derivatives of F w.r.t. the control variablesbn yields

δF
δbn

=
∫ ă+T

ă

∫

Γw

Q1,i
∂vi

∂bn
dΓdt

︸ ︷︷ ︸

G1

+[G2+G3+G4]
δT
δbn

(12)
where

Q1,i = uiv jn j +ν
(

∂ui
∂x j

+
∂u j
∂xi

)

n j −qni (13)

+ui
∣
∣v jn j

∣
∣+u jv j

vmnm
|vr nr |

ni (14)

and

G2 =
1

2T
g2

∣
∣
∣
∣
t=ă+T

G3 = −
1

2T2

∫

T
g2dt

G4 = −

∫

Ω
ui

∂vi

∂ t
dΩ

∣
∣
∣
∣
t=ă+T

The last threeG terms are derived from the application of
the Leibniz theorem and appear only ifT is unknown. δF

δbn
is normally expected to be independent of the ˘a value. The
question is whether this is also true from the numerical
point of view. Let us though further investigate the terms
appearing on the r.h.s. of eq. 12. Since amplitudesAk and
phasestk

0 are independent ofT, terms includingδT
δbn

in the

expressions forδF
δAk and δF

δ tk0
are zero and the remaining

integral term (G1) takes on a value which does not depend
on ă, due to the periodicity of the involved quantities. In
contrast, this is not evident in theδF

δT formula (for δT
δbn

=1).

It can be shown that
∂vk

i
∂T oscillates with period equal to

T and amplitude depending linearly ont. This behaviour
reflects upon the integrandQ1,i

∂vi
∂T and the corresponding

integral is periodic w.r.t. ˘a. According to their definition,
termsG2 and G4 which contribute toδF

δT are affected by
the choice of ˘a, since they are both expressed att = ă+T.
Therefore, δF

δT is the synthesis of the periodic, in terms
of ă, terms G1, G2 and G4, which counterbalance each
other and lead to a constant value, independent of ˘a (fig. 1).
This term-by-term investigation is presented in both the
jet-based flow control optimization around a cylinder and
the 1D mathematical problem. For the latter, closed-form
expressions are derived.

The differentiation of the jet velocity componentsvk
i

w.r.t. bn for both jet velocity profiles, eqs. 3 and 4 can
easily be derived. It is worth mentioning though that,
based on eq. 4, where the jet location also varies, inequality
constraints must be imposed, in order to have distinct jet
slots and avoid overlapping. The constraint functions are

c1 = φ1+
w
2
< 0

ci = φi−1−φi +w< 0 , i ∈ [2,Njets]

cNjets+1 = π −φNjets+
w
2
< 0 (15)
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Figure 1: ComputedGi terms and the objective function
gradient w.r.t. periodT, in terms ofă (marked as a on the x
axis).

wherew is the angular width of each jet slot, determined
by the constantz. Constraintsc1 and cNjets+1 ensure that
the first and last jet won’t exceed 0 andπ rads respectively.
By satisfying theci constraint,i ∈ [2,Njets], the ith jet will be
located between its adjacent jets, without overlapping them.

These constraints are imposed via the inner barrier
method,5 according to which the objective function takes
the form

Fconstr= F −ωp

Njets+1

∑
i=1

1
ci

(16)

where ωp is a weight which is initialized at a relatively
large positive number and decreases in the course of the
optimization.

4 Applications

The presented adjoint method is applied to the minimization
of the time-averaged squared lift or drag, for the flow
around a cylinder at Re = 100. In all cases, 20 pulsating
jets are placed along the circumference of the cylinder with
the angular width of each jet slot being constant and equal
to π

120D, whereD is the cylinder diameter. In some of the
cases, the jet locations are fixed and equidistributed along
the cylinder circumference (in these cases, the velocity
profile is given by eq. 3) and in some other the jet locations
are free to vary (eq. 4).

In the uncontrolled case, the flow is characterized by the
generation of von Karman vortices with periodT ≈ 0.59s.
In the controlled cases, only the jets along the top-half of
the cylinder perimeter are controlled and their values are
mirrored to the jets along the bottom-half. For all controlled
cases, other than those in which the jets period is unknown,
the jets operate with fixed period equal toT = D

U∞
= 0.1s.

Details about the optimization results, as well as the
computed primal and adjoint flow fields will be included
in the full paper. In this extended abstract, three figures,
regarding the flow control around the cylinder, are presented
(figs.2,3,4); Their captions clearly explain and comment on
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Figure 2: Comparison of the drag coefficient for the cases
of lift (top) and drag (middle) minimization. For each of the
objective forces, two sets of design variables were used. In
the first one the jets amplitudes are allowed to change with
fixed phases (equal to 0s), while in the second one both
amplitudes and phases are allowed to vary. Lift acting on
the cylinder is eliminated in all cases, since the presence of
jets eliminates vortex shedding. In all cases, period was
fixed and equal to 0.1s. Optimization (steepest descent)
algorithm convergence for minimizing drag (bottom). It is
seen that, when both jets amplitudes and phases are allowed
to change the optimization, apart from leading to a better
optimal value, also converges faster. Moreover, in this case,
the drag oscillation amplitude is greatly decreased.
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Figure 3: Convergence of the optimization algorithm for
minimizing drag, with periodT as the only design variable.
This optimization is a continuation of a previous test
case which used the amplitudes as design variables. In
the present study, the latter are kept fixed and a further
reduction of the objective function is seeked by varying
only the period. Computed objective function andT values
at each optimization cycle are presented.

the presented results. The mathematical 1D case will be
presented in the full paper.
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Figure 4: Top: Drag minimization convergence with design
variables either the jets locations or both jets locations
and amplitudes. This optimization is a continuation of a
previous test case, where amplitudes had been the design
variables. Bottom: The optimal location of the jets is also
presented for the first case. It is seen that the jets should
be applied in the front half of the cylinder so as to prevent
the flow from separating. The most downwind jets in the
separated region, have a really small amplitude and play a
minor role in the optimization process. In both cases, phase
and period were kept constant (0sand 0.1s, respectively).
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