
EUROGEN 2015 September 14-16, 2015, Glasgow, UK

Checkpointing with time gaps for unsteady adjoint CFD
Jan C. Hueckelheim*

Email: j.c.hueckelheim@qmul.ac.uk

Mateusz Gugala
Email: m.gugala@qmul.ac.uk

Jens-Dominik Mueller
Email:j.mueller@qmul.ac.uk

School of Engineering and Materials Science (SEMS)
Queen Mary University of London, Mile End Road, London, E1 4NS, UK

Summary

Gradient-based optimisation using adjoints is an increasingly common approach for industrial flow applications. For
cases where the flow is largely unsteady however, the adjoint method is still not widely used, in particular because of its
prohibitive computational cost and memory footprint. Several methods have been proposed to reduce the peak memory
usage, such as checkpointing schemes or checkpoint compression, at the price of increasing the computational cost even
further. We investigate incomplete checkpointing as an alternative, which reduces memory usage at almost no extra
computational cost, but instead offers a trade-off between memory footprint and the fidelity of the model. The method
works by storing only selected physical time steps and using interpolation to reconstruct time steps that have not been
stored. We show that this is enough to compute sufficiently accurate adjoint sensitivities for many relevant cases, and
does not add significantly to the computational cost. The method works for general cases and does not require to identify
periodic cycles in the flow.

Keywords: Unsteady adjoint, checkpointing, checkpoint compression, gradient-based optimisation

1 Introduction

The adjoint method is commonly used in academia and
industry to compute the derivative of a cost function with
respect to its design variables. Its greatest appeal lies in the
fact that the computational cost is constant in the number of
design variables, in contrast to simpler approaches such as
finite differences or tangent-linear derivatives. This makes
the method feasible for industrial applications with rich
design space.1

Many real-world problems however still present a
challenge for the adjoint method. A particular problem is
severe unsteadiness, as can be found in turbines, including
wind turbines, aircraft wings in high-lift configuration, car
engines and many more.2 The adjoint method has been
formulated for this kind of problem in frequency3 and
temporal space,4 but requires the storage of the full flow
history, resulting in prohibitive memory requirements in
most cases.

A well-known way to mitigate this problem is the
REVOLVE checkpointing algorithm.5 It stores checkpoints
only at carefully chosen time steps, and recomputes each

time step when it is needed, starting from the time steps
that have been stored. Another approach that has recently
been proposed6 is the compression of checkpoints. Both
ideas have one thing in common: the memory requirements
are relaxed at the cost of increased computational expense.
Furthermore, lossless data compression does not offer large
savings in storage space,7 and so the method becomes more
useful if lossy compression is used, resulting in errors in the
reconstruction of the primal flow field.

We investigate incomplete checkpointing as an
alternative, which reduces memory usage at no extra
computational cost, but instead offers a direct trade-off
between memory footprint and the fidelity of the model.
We use a dual timestepping scheme in which the inner
iterations are fully converged, so that only physical time
steps need to be stored and the adjoint field can be
reconstructed based on the fully converged checkpoint,
which preserves the accuracy of the result if the innter
iteration was fully converged.8 In addition, we store
only selected physical time steps and use interpolation to
reconstruct time steps that have not been stored.

1

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

The scheme comes at negligible cost for linear
interpolation, and at no cost at all in case of constant
interpolation between checkpoints. In particular,
the reconstruction from data available in memory is
significantly faster than reading the checkpoint from
disk, which would be another possible (but slow) way of
addressing the memory limitations. Finally, our method
does not require any assumptions about the flow such as
periodicity.

2 Background

We use an unsteady RANS solver with Spalart-Allmaras
turbulence model, BDF2 dual time stepping and an implicit
solver to converge the inner iterations which was presented
in.9 The adjoint solver is generated using the automatic
differentiation tool Tapenade10 with some hand-coded
optimisations for improved speed.11

2.1 Solving the flow equations

The unsteady RANS flow equations can be written as

∂U
∂ t

+R(U) = 0 (1)

and can be discretised using a third-order accurate BDF2
time marching scheme as

∂U
∂ t

+R(Ut) =
Ut−2−4 ·Ut−1 +3 ·Ut

2∆t
+R(Ut) (2)

:= R̂(Ut−2,Ut−1,Ut) (3)

The above system can be evolved in time by solving the
linearised system for Uk and successively updating the
converged flow solution Ut at time t[

∂ R̂(Ut−2,Ut−1,Uk)

∂Uk

]
δUk =−R̂(Ut−2,Ut−1,Uk) (4)

Ut =Ut−1 +δUk (5)

2.2 Solving the adjoint equations

The unsteady adjoint system can be written as

−∂v
∂ t

+

(
∂R
∂U

)T

v−
(

∂J
∂U

)T

︸ ︷︷ ︸
:=Rv

= 0 (6)

and can, like the primal equation, be discretised using BDF2
as

−vt−2−4 · vt−1 +3 · vt

2∆t
+Rv(vt) (7)

:= R̂v (Ut−2,Ut−1,Ut) (8)

and solved using the same method as the primal equation.
The solution of the adjoint equation requires the history

of the flow solution Ut at each time step for the calculation
of Rv and the preconditioning matrix PT .

This flow field can be stored during the flow solution
and loaded during the adjoint solution, recomputed by
running the flow solver again (e.g. following the REVOLVE
algorithm), restored approximately from a compressed data,
or reconstructed using interpolation, following our new
approach.

2.3 Physical checkpointing

We use an approach in which only the physical time
steps are stored during the primal computation and
restored during the adjoint computation, as presented
in.12 The memory requirements are orders of magnitude
smaller compared to the brute-force method of storing
every iteration. The method is illustrated in the below
pseudo-code.

n← 0;
U0,V0← initial guess;
while t < t f inal do // primal loop

n← 0;
while R(Ut,n) > cutoff do // primal loop

Ut,n+1← flow_pseudostep(Ut,n);
n← n+1

end
t← t +∆t;
Ut+1,0←Ut,n; // init for next step
store(Ut);

end
while t > tinit do // adjoint loop

load(Ut);
Vt,0←Vt+1,n; // init for next step
t← t−∆t;
while R(Vt) > cutoff do // primal loop

Vt,n+1← adjoint_pseudostep(Vt,n,Ut);
n← n+1

end
end

Function Dual timestepping with physical checkpointing

The challenge in this approach lies in the need to fully
converge the inner loop so that an efficient adjoint method
for fixed-point loops can be used.8 To address this, we
use an implicit solver with geometric multigrid and ILU
preconditioning to converge in an acceptable time.9

The calls to store() and load() in this algorithm are
replaced by calls to augmented routines gappyStore() and
gappyLoad() in order to implement the method proposed
in this paper.

3 Checkpointing with gaps

3.1 Storing

The routine to store the current flow state is augmented by a
logic that selects certain snapshots worth storing, which are
denoted by the set of stored time steps Ts which are a subset

2

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

of all time steps T .
if t ∈ Ts then // primal loop

store(Ut);
end

Function gappyStore(t)
In the simplest incarnation of this method, Ts would

contain only every n-th time step. In some special cases
it might be beneficial to vary the checkpoint density over
time, e.g. to capture a particular phenomenon with a higher
accuracy. This was not investigated in this work.

If our method is regarded as a very simple form of data
compression, then the data compression ratio is ‖T‖/‖Ts‖.
Obviously we get better compression ratios if we store
fewer time steps. For evenly spaced snapshots as suggested
above, we obtain a compression ratio ‖T‖/‖Ts‖= n.

3.2 Reconstruction

Checkpoints that have not been stored need to be
reconstructed. Let t denote the time for which a checkpoint
needs to be reconstructed. Also, let t+ and t− denote the
unique time steps for which all of the following conditions
hold:

t+, t− ∈ Ts

6 ∃t∗ : t < t∗ < t+

6 ∃t∗ : t− < t∗ < t

In other words, t+ and t− are the closest stored time steps
just after and before t, respectively. Furthermore, let tn be
defined by

tn =
{

t− if |t− t−|< |t− t+|
t+ else

i.e. the time step denoted by tn is either t+ or t−, whichever
is closer to t.

We can then implement the gappyLoad() routine for a
chosen interpolation order O as follows:

if t ∈ Ts then // t was stored
return load(Ut);

else
if O = 1 then // linear

U−← load(Ut−);
U+← load(Ut+);
return U−+ t−t−

t+−t− · (U
+−U−)

else
return load(Utn);

end
end

Function gappyLoad(t)
It is worth noting that if gaps between two stored time

steps t− and t+ are large and therefore there are several
calls to gappyLoad() where t− and t+ do not change
between calls, this method can be implemented much more
efficiently by storing most of the intermediate results.

The routine could be implemented for higher orders of
interpolation, taking into account more of the surrounding
stored time steps. Second order interpolation could be used
to match the order of the BDF2 time marching scheme used
in the flow computation.

4 Test case

To test our method, we use a RAE2822 aerofoil . The
trailing edge has been truncated at 5% cord length to
provoke vortex shedding. The freestream velocity is
0.2 Ma, at 0◦ angle of attack. We use the Spalart Allmaras
turbulence model. The mesh has around 300k cells, the
solver is node-centred and uses 4 levels of geometric
multigrid for faster convergence. The overall geometry and
the vortex shedding can be seen in Figs. 1 and 2.

We use a time step size of 0.2 ms, which corresponds
to approximately 30 checkpoints for every flow period. We
run several tests, in which we store checkpoints at every
1 (reference result), 2, 4, 8, 16 and 32 time steps. Note
that while this flow does exhibit clear periodic cycles, our
solver does not make use of this periodicity in any way and
our findings should therefore apply to non-periodic flow as
well.

The objective function is defined as the total drag of
the aerofoil . The aerofoil surface nodes’ displacement
in surface normal direction is used as design vector.
The spring analogy model is used to project volume
sensitivities onto the surface. No actual optimisation step
is performed, as we only consider the surface sensitivities
in the assessment of the result quality.

All sensitivity results will be compared time-averaged
over a window of 10 flow periods. We try both linear as well
as constant interpolation for the checkpoint reconstruction.

As a reference, we will also show results of a simulation
where both primal and adjoint solutions have been carried
out with a time step size that is larger than the initial run
by a factor of 2, 4, 8, 16 and 32. We expect that there
is a benefit of running the primal solution time-accurately
with fine time steps and storing selected snapshots of this
high-fidelity primal solution, compared to just running both
primal and adjoint with coarse time steps that are too large
to be time-accurate.

5 Results

For the truncated aerofoil case we perform two parameter
studies. The flow parameters are the same in both cases. In
the first set, which will be called gappy checkpointing, we
use our proposed method of running the primal flow solver
with a time step size that is sufficient to be time-accurate.
The adjoint solver will use interpolation to reconstruct the
checkpoints that were not stored.

In a reference test set, which will be called coarse
set, we will run both the primal and adjoint solver with
larger time steps. The unsteady flow will not be fully
resolved. The time step sizes in the coarse set will be chosen
to match the size of gaps between stored checkpoints in

3

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

Figure 1: Vortex shedding behind the trailing edge of the
truncated aerofoil . Note that this flow is poorly converged,
the final version of the paper will have converged results.

Figure 2: Zoom into the trailing edge area. We can see the
flow detaching at the corners of the truncated trailing edge
and producing vortices.

28.5

29

29.5

30

0.03 0.031 0.032 0.033 0.034 0.035

reference
every 4th
every 8th

drag

time

Figure 3: Drag history over three shedding periods, with
the reference result, and samplings at every 4th or every
8th timestep. While the sampling at every 4th step follows
the general trend reasonably well, the sampling at every 8th
step is drastically different. The adjoint solution is based
on a sampling that is just as coarse. Note that for this
simulation, we used only 10 time steps per shedding period
to speed up the simulation. In the final version of the paper,
the simulation will be carried out with finer time steps to
resolve the shedding accurately in time.

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

primal and adjoint coarse
gappy, constant interpolation

gappy, linear interpolation

error

gap
size

Figure 4: Illustration of the error trend that we expect to
see. The error (y-axis) will grow as the time resolution is
decreased by a factor (x axis). At some point, the solver
will not be able to converge any more. Using the full time
resolution and then using a coarser sampling for the adjoint
solver is expected to be significantly better than just using
a coarser time resolution for the primal and adjoint solver.
Both would result in the same memory footprint. Note that
this plot does not yet show any actual measurement results,
this will be included in the final paper.

4

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

our gappy set. This will allow us to quantify how much
is gained by running the primal flow with full temporal
solution and then discarding some of the checkpoints due to
memory constraints, as compared to using a lower temporal
resolution in the first place for both primal and adjoint.

6 Conclusion, future work

We show that gaps in the stored time trajectory are an
easy and effective way of reducing the memory footprint
of unsteady adjoint calculations. The effect on the
sensitivity accuracy is acceptable for many industrial cases,
making our approach worth considering as an alternative to
lossy checkpoint compression, with a significantly smaller
implementation effort and computational cost.

In the future, we plan to investigate higher-order
interpolation in time, non-uniform checkpoint storing
intervals, and checkpointing that is incomplete in space,
e.g. by storing only a coarse grid result from our geometric
multigrid solver as a checkpoint.

7 Acknowledgement

This project has received funding from the European
Union’s Seventh Framework Programme for research,
technological development and demonstration under grant
agreement no [317006].

This research utilised Queen Mary’s MidPlus
computational facilities, supported by QMUL Research-IT
and funded by EPSRC grant EP/K000128/1.

References

[1] Giles, M., Pierce, N., Giles, M., and Pierce, N. Adjoint
equations in CFD - Duality, boundary conditions and
solution behaviour. American Institute of Aeronautics
and Astronautics 2015/05/03 (1997).

[2] Lee, B. J. and Liou, M.-S. Unsteady adjoint approach
for design optimization of flapping airfoils. AIAA
Journal 50(11), 2460–2475 2015/05/03 (2012).

[3] Nadarajah, S. and Jameson, A. Optimum shape design
for unsteady three-dimensional viscous flows using
a nonlinear frequency-domain method. Journal of
Aircraft 44(5), 1513–1527 2015/05/03 (2007).

[4] Rumpfkeil, M. and Zingg, D. A General Framework
for the Optimal Control of Unsteady Flows with
Applications. American Institute of Aeronautics and
Astronautics 2015/05/03 (2007).

[5] Griewank, A. and Walther, A. Algorithm 799:
Revolve: An implementation of checkpointing
for the reverse or adjoint mode of computational
differentiation. ACM Trans. Math. Softw. 26(1), 19–45
March (2000).

[6] Tim Wildey, E. C. C. and Shadid, J. Adjoint based
a posteriori error estimates using data compression.
In VI International Conference on Adaptive Modeling

and Simulation, J. P. Moitinho de Almeida, P. D ıez,
C. T. and Parés, N., editors, (2013).

[7] Ratanaworabhan, P., Ke, J., and Burtscher, M.
Fast lossless compression of scientific floating-point
data. In Proceedings of the Data Compression
Conference, DCC ’06, 133–142 (IEEE Computer
Society, Washington, DC, USA, 2006).

[8] Christianson, B. Reverse aumulation and imploicit
functions. Optimization Methods and Software 9(4),
307–322 (1998).

[9] Xu, S., Radford, D., Meyer, M., and Müller, J. D.
Stabilisation of discrete adjoint solvers. Journal of
Computational Physics submitted (2014).

[10] Hascoët, L. and Pascual, V. The Tapenade
Automatic Differentiation tool: principles, model, and
specification. Research Report RR-7957, May (2012).

[11] Christakopoulos, F., Jones, D., and Müller, J.-D.
Pseudo-timestepping and verification for automatic
differentiation derived {CFD} codes. Computers
Fluids 46(1), 174 – 179 (2011). 10th {ICFD}
Conference Series on Numerical Methods for Fluid
Dynamics (ICFD 2010).

[12] Hueckelheim, J., Xu, S., Gugala, M., and Müller,
J.-D. Time-averaged steady vs. unsteady adjoint:
a comparison for cases with mild unsteadiness.
American Institute of Aeronautics and Astronautics
2015/05/03 (2015).

5

	1 Introduction
	2 Background
	2.1 Solving the flow equations
	2.2 Solving the adjoint equations
	2.3 Physical checkpointing

	3 Checkpointing with gaps
	3.1 Storing
	3.2 Reconstruction

	4 Test case
	5 Results
	6 Conclusion, future work
	7 Acknowledgement

