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Summary

This paper presents the development of the continuous adjoint method, including the differentiated Spalart–Allmaras
turbulence model, for shape optimization. For the solution of the flow and adjoint equations, a pseudo-compressibility
based implicit solver was programmed in the OpenFOAM c© environment. In foam-3.1-ext, the coupling of the
incompressible flow equations relies upon the Rhie-Chow interpolation. Here, the pseudo-compressibility approach is
applied, by transforming the elliptic system of incompressible equations into a hyperbolic one. This allows the usage of
solvers suited for this type of PDEs, which are potentially faster. The shape optimization process is applied in two cases,
a U-bent and the Ahmed body, aiming at minimum total pressure losses and drag, respectively.
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1 Introduction

Deterministic optimization algorithms require the
computation of the gradient of the selected objective
function w.r.t a set of design variables. The most efficient
way to compute this gradient is the adjoint method1, in
either its discrete or continuous variant.

In this paper, the continuous adjoint method2, where
the adjoint PDEs are firstly derived and then discretized,
is used. The state equations are the mean-flow
Navier-Stokes equations for incompressible fluids and
the Spalart–Allmaras turbulence model3 PDE is used to
effect closure. In the derivation of the adjoint PDEs
and boundary conditions, the turbulence model PDE is
differentiated4, thus, overcoming the common assumption
of frozen turbulence.

When incompressible flows are numerically predicted,
the main difficulty is found in the physical decoupling of
the continuity and momentum equations since there is no
pressure term in the continuity equation. In segregated
algorithms (e.g. SIMPLE), when the numerical solution
for the velocity precedes the one for the pressure, a
Poisson equation is derived and solved for the pressure5,
in order to impose the divergence-free velocity constraint.
The main reason that segregated solution algorithms, like
SIMPLE, have been adopted by the CFD community (and
implemented in the CFD package OpenFOAM c©) is the low
memory requirement.

On the other hand, implicit solvers treat a single matrix
containing linear couplings for all flow variables. Implicit

solvers could increase convergence rates, induce potentially
greater stability and, in some cases, might really be needed
to ensure convergence.

By manipulating the continuity equation,
pseudo-compressibility aims at formulating a hyperbolic
system of equations. The system transformation is
achieved by adding a pseudo-time derivative for the
pressure, multiplied with a coefficient 1/β , to the continuity
equation. The choice of the β coefficient is crucial in the
stability and convergence of the system.

In this paper, the formulation of the flow solver, based
on the pseudo-compressibility approach, is presented at
first. Then, the objective functions used in internal
(i.e. total pressure losses) and external (i.e. drag)
aerodynamics are given, followed by the development of the
continuous adjoint formulation and the differentiation of the
Spalart–Allmaras turbulence model. Programming issues
in OpenFOAM c© are discussed. Finally, results obtained
during the optimization of the U-bend and Ahmed body are
presented.

2 The flow solver

In the pseudo-compressibility approach6, the continuity
equation is augmented by a pseudo-time marching term
for the pressure, multiplied by a coefficient (1/β ). By
doing so, the system of equations for the incompressible
flow is transformed from elliptical to hyperbolic. The
resultant system is well posed and existing algorithms for
the numerical solution of compressible flows can be used to
march the system in time and reach a steady state solution7.
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The pseudo-compressibility method can be seen as a
preconditioning method applied to the compressible flow
solution methods. After the addition of the pseudo-time
derivative term(s), the mean-flow PDEs, read

Rp =
1
β

∂ p
∂ t

+
∂υ j

∂x j
=0 (1)

Rυi =
∂υi

∂ t
+υ j

∂υi

∂x j
+

∂ p
∂xi

+
∂

∂x j

[
(ν+νt)

(
∂υi

∂x j
+

∂υ j

∂xi

)]
=0 (2)

where p and υi, i = 1,2(,3) is the kinematic pressure and
velocity (i.e. first state variables), respectively, β is the
artificial compressibility coefficient and xi, i = 1,2(,3) the
Cartesian coordinates. ν and νt are the bulk and turbulent
viscosity, respectively. Based on the Spalart–Allmaras
turbulence model3, the viscosity coefficient is given by
νt = ν̃ fv1 , where ν̃ (i.e. last state variable) is the solution
in the corresponding state equation, Rν̃ =0, where
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− ν̃P(ν̃)+ ν̃D(ν̃)=0 (3)

The production P(ν̃) and destruction D(ν̃) terms are given
by

P(ν̃) = cb1S̃, D(ν̃) = cw1 fw(S̃)
ν̃

∆2 (4)

where, the definition of the remaining terms fv1 , fw, S̃, and
constants cb1 , cb2 , cw1 and σ can be found in3. ∆ stands for
the distance from the nearest wall boundary face.

For the discretization of the inviscid fluxes, the
approximate Riemann solver proposed by Roe8 is used. In
the Roe flux scheme, a Jacobian matrix based on averaged
face-sharing neighboring cells must be computed.

The pseudo-compressibility approach has been
implemented in foam-3.1-ext using the existing block
matrix infrastructure. Each element of the diagonal
and off-diagonal left-hand-side matrices (diag,l,u in the
OpenFOAM c© terminology) is a rank-two tensor (tensor3
(tensor4) for 2D (3D) simulations in OpenFOAM c©

terminology). This, leads to a strong numerical coupling of
the mean-flow PDEs. For the discretization of the diffusion
terms, the standard OpenFOAM c© approach was used
(fvm::laplacian()). Contributions of the inviscid fluxes
were accounted for without using existing OpenFOAM c©

operators. For this purpose the developed Roe scheme
was used. It should be mentioned that foam-3.1-ext uses
cell-centered, finite-volume discretization schemes with
the ability to support arbitrary convex polyhedral meshes.
The U-bend case uses a structured mesh while the Ahmed
body an unstructured one.

3 The Continuous Adjoint Method

Depending on the application, two objective functions Fi
are considered. The first refers to the volume averaged total
pressure losses (applied to internal aerodynamics problems)
between the inlet and outlet domains while the second
corresponds to the drag force (in external aerodynamics).
These functions are
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where ni is the outwards pointing normal unit vector, ri are
the components of the unit vector aligned with the farfield
velocity, SI , SO and Sw stand for the inlet, outlet and solid
wall boundaries, respectively.

Figure 1: Evolution of the total pressure losses objective
function (non-dimensionalized by its initial value) during
the optimization loop for the U-bend case. The steepest
descent approach was used.

In the continuous adjoint method, the augmented
objective function Faug is defined as the sum of the
objective function F and the field (Ω) integral of the
residual of the state equations R~U = 0, ~U = (p,υi, ν̃)

multiplied by the adjoint fields ~Ψ = (q,ui, ν̃a), Faug = F +∫
Ω
~ΨR~U dΩ. Its variation with respect to the design variable

array, bn (n = 1 . . . ,N), after applying the Leibniz theorem,
becomes4, 9,
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The adjoint field equations4 and their boundary
conditions are derived by eliminating field integrals
depending on ∂ p

∂bn
, ∂υi

∂bn
, ∂ ν̃

∂bn
. The field adjoint to the
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Figure 2: Velocity field for the U-bend case before and after
the optimization.

mean-flow and turbulence equations are given by
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where ei jk is the permutation symbol. Terms CS, S and Cν̃

can be found in a recent publication4 by the same group.
After having computed the adjoint fields using the

same pseudo-compressibility approach, by numerically
satisfying the adjoint equations and their boundary
conditions, the variation of the Faug becomes independent of
variations in the state variables, leading to the expressions
of the sensitivity derivatives in terms of ~U and ~Ψ as well
as variations in geometrical quantities. The sensitivity

Figure 3: Evolution of the objective function
(non-dimensionalized by its initial value) during the
optimization loop for the Ahmed body case. In each cycle,
the design variables are updated using steepest descent
with a user-defined step value.

Figure 4: Velocity field for the Ahmed body. Top: Velocity
field for the initial shape of the body. Bottom: Optimized
geometry. The decrease in the drag force exerted on
the body reflects upon the smaller recirculation region
developed in the wake.

derivatives of Faug are given by

δFaug

δbn
= AFi −

∫
SW

(ν+νt)

(
∂ui

∂x j

+
∂u j

∂xi

)
n j

∂υi

∂xk

δxk

δbn
dS

−
∫

SW

(ν+νt)
∂ ν̃a

∂x j
n j

∂ ν̃

∂xk

δxk

δbn
dS

+
∫

Ω

ν̃aν̃ Cd(ν̃ ,~υ)
∂∆

∂bn
dΩ (9)

3



EUROGEN 2015 September 14-16, 2015, Glasgow, UK

where, depending on the objective function used,
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The wall boundary (SW ) and field integrals in equation
(9) depend on the state and adjoint variables. The term
∂∆

∂bn
is treated as in a previous work4, by formulating and

solving the adjoint to the eikonal equation for distance
computations.

4 Applications

The developed code was applied in two shape-optimization
problems. Both are parameterized by using volumetric
B-splines. First, a U-bend case, illustrated in figure 2,
was optimized. Here, 216 design variables are used.
These are the coordinates of the volumetric B-spline control
points. The Reynolds number is ∼7.3×104, the number of
cells is 1.7×104, the mean non-dimensional wall distance
is y+ = 0.8 and the magnitude of the inlet velocity is
υin = 10m/s. The objective function F1 is considered. In
figure 1, the convergence for the optimization process, is
presented. A total drop in the objective function of ∼ 40%
after 10 optimization cycles is observed. The velocity field
for the optimized duct is illustrated in figure 2.

The second case is the Ahmed body. Depending on the
rear slant angle, various configurations for this test case
exist. Here, a body with a slant angle of 30o is to be
optimized. This case is parameterized with 210 design
variables. As in the previous case, the design variables
are the coordinates of the volumetric B-spline control
points. Considering the length of the car as characteristic
length and U∞ = 40m/s, the Reynolds number is equal to
2.9×106. The number of cells is ∼2×105 and the mean
non-dimensional wall distance is y+ = 1.0. The objective
function used is the drag force (i.e. F2). The convergence
history of the steepest descent algorithm, used to minimize
F2, can be found in figure 3. A ∼30% reduction in the
objective function after 10 optimization cycles is achieved.
Figure 4 illustrates the computed velocity magnitude
isoareas, before and after the optimization.

Details on the convergence characteristics of the
pseudo-compressibility method applied to the flow and
adjoint solver will be presented in the full paper.
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