
EUROGEN 2015 September 14-16, 2015, Glasgow, UK

Efficiency of an Adjoint CFD Code for Shape Optimization Problems
Z. Dastouri*

Software and Tools for Computational Engineering (STCE)
RWTH Aachen, LuFG Informatik 12, D-52062 Aachen, Germany

Email: dastouri@stce.rwth-aachen.de

U. Naumann
Software and Tools for Computational Engineering (STCE)

RWTH Aachen, LuFG Informatik 12, D-52062 Aachen, Germany
Email: naumann@stce.rwth-aachen.de

Summary

Sensitivity analysis with the aim of design optimization is a growing area of interest in Computational Fluid
Dynamics(CFD) simulations. However, one of the major challenges is to deal with a large number of design variables
for large-scale industrial application. One of the effective solution approach is to compute adjoint based sensitivities in
the differentiated CFD code. In this paper, we develop a discrete adjoint code for an unstructured pressure-based steady
Navier-Stokes flow solver using Algorithmic Differentiation(AD). The objective is to assess the performance of the
adjoint code and to improve its efficiency in terms of memory consumption and runtime. To achieve that, we apply the
effective techniques to optimize the performance by implementation of check-pointing schemes (Revolve Algorithm1)
and analytical treatment of the inner iterative linear solver. We combine the flexibility of an operator overloading tool
with the efficiency of an adjoint code generated by source transformation. In addition, we improve the performance of
adjoint computation by exploiting the mathematical aspect of the involved fixed-point iteration by reverse accumulation.2

We compare the effectiveness of these methods in terms of numerical cost for the optimization of a vehicle climate duct
industrial test case.

Keywords: Algorithmic Differentiation, Computational Fluid Dynamics Code, Operator Overloading, Discrete Adjoint,
Optimization, Sensitivity Analysis

1 Introduction

Design optimization for fluid flow plays a significant
role in wide range of engineering applications including
aeronautic, turbomachinery and automotive design. In
complex configurations, the optimization problem scales
to the large number of design parameters and constraints.
The effect of independent design variables on the system
performance can be calculated in terms of sensitivities
that are the derivatives of one or more quantities
(outputs) with respect to one or several independent
variables (inputs). By default, these derivatives can be
obtained by divided (finite) differences from perturbed
solutions. This method is both costly and subject to
inaccuracies. Algorithmic Differentiation(AD)3, 4 is a
wellknown technique to evaluate derivatives based on the
application of the chain rule of differentiation to each
operation in the program flow. The derivatives given by
the chain rule can be propagated forward (forward mode)
or backward (reverse mode). There are two main methods

for implementing algorithmic differentiation: by source
code transformation (S-T) or by using derived data types
and operator overloading (O-O). In O-O AD the code
segments and arguments of the primal code are stored inside
a memory structure called tape during the forward run of
the primal. In reverse mode the stored values on the tape
are interpreted to get the resultant derivatives. While in S-T
approach the code is parsed at a compile time and the actual
code is differentiated.
Prior to this paper, we describe a design framework
for application of the AD tool by operator overloading
in Fortran dco/fortran1 to CFD analysis solver called
GPDE 2. GPDE is an unstructured pressure-based
steady Navier-Stokes solver with finite volume spatial
discretization, for the in- compressible viscous flow
computation.6

1Derivative Code by Overloading in Fortran
2General Partial Differential Equation solver developed by CFD group

of QMUL(http://www.qmul.ac.uk)

1



EUROGEN 2015 September 14-16, 2015, Glasgow, UK

In previous paper,7 we discussed the implementation
of dco/fortran in original CFD solver from scratch to get
the tangent-linear and adjoint version of the CFD code and
also we addressed proper solution algorithms adapted to
the code including a equidistant checkpointing scheme for
iterative solver and development of a analytical treatment of
linear solver inside the code.
In this paper our emphasize is on the improvement of
efficiency by replacing the used equidistant checkpointing
scheme by REVOLVE.1 Moreover we combine the
flexibility and robustness of operator overloading with the
efficiency of source- transformation approach by coupling
dco/fortran and TAPENADE8 for most expensive part of
the adjoint code. In addition, we get the benefit of
reverse accumulation technique2 for the fixed point iterative
construction in the CFD code that carries out the nonlinear
iterations for solving the momentum and mass conservation
equations. This implementation shows that the derivatives
converge at the same rate of the primal code, displaying of
an improvement in performance.

2 CFD-Simulation

The CFD solver we applying for adjoint computation, is an
incompressible, steady-state flow solver with cell-centered
storage, face-based residual assembly; it works on
unstructured meshes with collocated variables, and uses
the SIMPLE9 pressure correction algorithm as a pseudo
timestepping scheme towards a steady solution. It is written
in Fortran 90-95 (7,000 lines) as a test-bed for developing
adjoint Navier-Stokes fields and is specifically designed to
facilitate interfacing with optimization libraries.

The case study that is used for flow model simulation
and sensitivity studies, is the S-bend channel flow case
which is a simplified vehicle climatisation duct. Test case
is carried out at Reynold = 500 on hexahedral mesh with
47000 elements. The boundary condition is defined as
uniform flow at inlet. The simulation in GPDE is performed
for 273 outer iteration in the primal code until we attain the
convergence with the tolerance of 9.4413E-08 for velocity
reduction. The geometry and velocity vector field along the
channel is shown in Figure 1.

3 Effective Adjoint CFD Solver

Simplicity of implementation of the adjoint method by
overloading tool comes with a price in taping process. The
needed size of this tape grows dynamically proportional
to the number of operations in the calculation that leads
to considerable memory consumption. The effective
techniques need to be implemented to reduce the memory
consumption in the adjoint code.

3.1 Binomial Checkpointing

Checkpointing schedules for O-O AD are commonly used
in order to reduce the huge memory consumption usually
generated by taping a time-dependent iterative solver in
plain black box O-O AD. The basic idea is to split the
entire program into several sequential blocks of operations

whose computational graphs each fit into the available
memory. In case of an iterative solver these blocks
consist of a certain number of iterations. These blocks
are then taped and interpreted one at a time to produce
the resulting adjoint values of the complete computation.
Unfortunately, this procedure is always a trade-off between
memory consumption and runtime due to two reasons:

• The system state at the beginning of a block usually
depends on the execution of all previous blocks.

• Blocks have to be taped and interpreted in reverse
order compared to their position in the original code.

A checkpoint, i.e. saving the system state, is used
to avoid recalculating all previous blocks when taping
and interpreting blocks in reverse order. The revolve
algorithm,1 introduced by Griewank et al, provides an
optimal checkpointing schedule for a prescribed number of
ncp checkpoint slots. It always tapes only one time step
and minimizes the amount of extra forward steps needed
by setting checkpoints in a binomial fashion. This method
yields logarithmic grows in spatial complexity.

3.2 Reverse Accumulation

The CFD procedure consists of iterative loops for flow
equations. Hence the memory requirement of the reverse
mode grows proportionally with the number of iterations.
The fixed point iterative loop in CFD code carries out outer
iterations for solving the momentum and mass conservation
equations. Therefore, the reverse accumulation technique2

for fixed point iterative construction in the CFD code
is implemented. By applying this technique we reduce
memory consumption of the adjoint code independent of
the number of iterations. The implementation of the method
using dco/fortran O-O tool is illustrated in Algorithm 1 and
figure 2.

3.3 Hybrid overloading-source transformation
approaches

The CFD code is alternatively differentiated by source
transformation tool, TAPENADE.2 TAPENADE is an
Automatic Differentiation tool which, given a Fortran
or C code that computes a function, creates a new
code that computes its tangent or adjoint derivatives.
This approach reduces the memory requirements for the
differentiating purposes and it is easier for the compiler to
do compile time optimizations. However in terms of ease
of implementation and ability to handle arbitrary functions,
operator overloading provides the differentiated code with
a greater flexibility and robustness in comparison with AD
by source transformation. Therefore coupling these two AD
tools remains an efficient approach to decrease in one hand
the development time of differentiated code and in other
hand to reduce the memory requirement of the adjoint code.
The implementation steps for applying TAPENADE AD
tool via a dco tape is explained in Figure 3 and Algorithm 2.
dco/fortran provides an interface to use external functions

2



EUROGEN 2015 September 14-16, 2015, Glasgow, UK

(a) S-Bend vehicle climatisation duct geometry (b) Velocity vector field though the geometry center

Figure 1: Geometry and velocity vector field of the S-bend channel flow

Calling the driver code
Call dco_get_tape_position(pos1)
Call switch_tape_to_passive()
do i = 1,n_iter
if i = n−1 then

Call switch_tape_to_active()
Call dco_get_tape_position(pos2)

else
Call f low(U,P,n_iter)

end
end do
Call dco_get_tape_position(pos3)
Call ob jective(Un,Pn,ob j,n_iter)
Call dco_a1s_set(ob j(1) = 1)
call dco_a1s_tape_interpret_adjoint_to(pos3) Call
dco_a1s_get((Ur(1),Pr(1)) = (Un

(1),P
n
(1)))

Call dco_a1s_set(U0
(1),P

0
(1)) = 0

while i < n.and.ξ < ε do
Call dco_a1s_tape_zero_adjoints
Call dco_a1s_set(U i

(1),P
i
(1)) =

(U i−1
(1) +Ur(1),P

i−1
(1) +Pr(1))

call
dco_a1s_tape_interpret_adjoint_from_to(pos3,pos2)
Call dco_a1s_get((U i

(1),P
i
(1)))

end
call dco_a1s_tape_interpret_adjoint_from(pos1)

Algorithm 1: Implementation of reverse accumulation
using dco/fortran

Figure 2: Reverse accumulation during the taping process

for the calculation of the adjoint. Instead of recording the
operations of such a function inside the forward-run, this
function is registered in the tape to call and execute in
reverse run of the adjoint code. The idea is to extract the
computationally most expensive part of the adjoint code
and differentiate it by TAPENADE engine. The adjoints
generated by TAPENADE increment back to dco tape.

4 Numerical Cost Comparison

Our approach in this paper is adjoint based shape
optimization problem from development the adjoint CFD
code to design optimization. We overview and implement
efficient techniques for improving the performance of
the adjoint CFD code and we demonstrate significant
improvement in terms of memory consumption and runtime
of the resulting code for a sample CFD problem. Sensitivity
analysis results are presented for pressure loss objective
function with respect to surface boundary nodes of S-bend
in three dimensions. We apply the sensitivity analysis
results to optimize the shape of the surface in the flow

3



EUROGEN 2015 September 14-16, 2015, Glasgow, UK

Figure 3: Calling TAPENADE from dco Tape

Forward Sweep
Call dco_a1s_checkpoint_create(cp)
Call dco_a1s_register_input(cp,U)
Call dco_a1s_register_input(cp,gradU)
Call dco_a1s_register_input(cp,X)
Call switch_tape_to_passive()
Call gradient_passive(U,X,gradU,n_iter)
Call switch_tape_to_active()
Call dco_a1s_register_output(cp,U)
Call dco_a1s_register_output(cp,gradU)
Call dco_a1s_register_output(cp,X)
Call
dco_a1s_register_external_function(gradient_ext,cp)
Reverse Sweep
Call
dco_a1s_read_incoming_adjoint_from_tape(geom_b,
U_b, grad_b)
!Specify diffhead TAPENADE Call grad_b(geom,
geom_b, U, U_b, grad, grad_b, n_iter)
Call
dco_a1s_write_outgoing_adjoint_to_tape(geom_b,
U_b, grad_b)

Algorithm 2: Implementation steps-Coupling dco and
Tapenade

domain.

Figure 4: Surface sensitivity results S-Bend

ACKNOWLEDGEMENT

The presented research is supported by the project
aboutFlow, funded by the European Commission under
FP7-PEOPLE-2012-ITN-317006.

References

[1] Griewank, A. and Walther, A. Revolve: an
implementation of checkpointing for the reverse
or adjoint mode of computational differentiation.
Algorithm 799: ACM Transactions on Mathematical
Software, 26(1):1945, March 2000.

[2] Christianson, B. Reverse accumulation and attractive
fixed points. Optimization Methods and Software,
3:311–326, 1994.

[3] The Art of Differentiating Computer Programs. An
Introduction to Algorithmic Differentiation. Software,
Environments, and Tools. SIAM, Philadelphia, PA,
2012.

[4] Griewank, A. Walther, A. Evaluating Derivatives:
Principles and Techniques of Algorithmic
Differentiation, second edition. SIAM: Philadelphia,
PA, 2008.

[5] Naumann, U. AD-enabled NAG Fortran compiler,
dco/fortran:User Guide, Software and Tools for
Computational Engineering institute, RWTH Aache,
2013

[6] Jones D, Christakopoulos F, Müller J-D. Preparation
and assembly of adjoint CFD codes. Computers and
Fluids 2011; 46(1):282–286. London, 2012.

[7] Dastouri, Z., Lotz, J., Naumann, U. Development
of a Discrete Adjoint CFD Code using Algorithmic
Differentiation by Operator Overloading. OPTi2014.
June 4-6, 2014, Kos, Greece.

[8] Hascoët, L., Pascual, V. The Tapenade automatic
differentiation tool: Principles, model, and
specification. ACM, Transactions On Mathematical
Software, Volume 39 Issue 3, Article No. 20, April
2013.

[9] Patankar,S.V. , SpaldingD.B. A calculation
procedure for heat, mass and momentum
transfer in three-dimensional parabolic flows.
International Journal for Heat Mass Transfer, Number
15:1787-1806, 1972.

4


