
EUROGEN 2015 September 14-16, 2015, Glasgow, UK

Sensitivity computation for ducted flows using adjoint of implicit
pressure-velocity coupled solver based on Foam

Arindam Sen*
Software and Tools for computational Engineering (STCE)

RWTH Aachen University, Süsterfeldstraße 65, Aachen, 52072, Germany
Email: sen@stce.rwth-aachen.de

Markus Towara
Software and Tools for computational Engineering (STCE)

Email: towara@stce.rwth-aachen.de

Uwe Naumann
Software and Tools for computational Engineering (STCE)

Email: naumann@stce.rwth-aachen.de

Summary

Adjoint based methods have become the focus of research in CFD optimization pertaining to their low computational
cost compared to other traditional methods. In principle, adjoints are computed via two methods: Continuous and
Discrete. In the continuous method, adjoints are computed by deriving the adjoint equations of corresponding state
variables and boundary conditions and then are solved using similar schemes as that of the primal. The discrete
approach using Algorithmic Differentiation (AD) [9] is implemented either by source transformation or by an operator
overloading tool. For an object-oriented code in C++ like OpenFOAM [10], the use of an operator overloading tool
becomes imperative. Discrete adjoints based on operator overloading have the distinct advantage of robustness and
stability while computing accurate gradients. Our experience however shows that adjoints of traditional SIMPLE
(semi implicit method for pressure linked equations) [13] like algorithms have high computational cost even after
employing standard performance improvement techniques such as binomial checkpointing [4] and analytic treatment
of the linear solver [3]. Thus in this paper we present the discrete adjoint solver based on puCoupledFoam [7], an
implicit pressure-velocity coupled incompressible steady state solver in Foam-extend(v3.1) [14].The objective is to
exploit the faster rate of convergence of the flow equations in terms of runtime and number of non-linear solves to
compute fast gradients. The solver is tested on related test problems to demonstrate significant performance improvement.

Keywords: Adjoints, CFD optimization, Discrete adjoints, implicit coupled solvers.

1 Introduction

Computing sensitivities i.e derivative of a desired objective
function with respect to useful geometric parameters are
the building blocks of Topology and Shape optimization.
Classical methods such as Finite Differences scale with the
size of the design space and hence often are too expensive
to be affordable. Adjoint methods on the other hand are
independent of the size of the design space and therefore
present a more suitable alternative. Adjoint based CFD
optimizations find extensive applications in the fields of
Aerospace, Turbomachinery and automotive applications
among others [6] [2] [12] and thus have evolved into a
lucrative research topic. Two of the major ways of obtaining

sensitivities are via the continuous and discrete based
methods. The continuous methods typically provide the
adjoint solution at the expense of two solver runs, one each
for the primal and adjoint set of equations often utilizing
similar numerical schemes with some additional tuning for
stability of the adjoint solution. However development
of continuous adjoint methods are deemed to be tedious
and lacks adaptability with respect to different governing
equations, boundary conditions and objective functions.
Stability especially for problems of industrial relevance
remains an area of concern and in some cases, as with the
k-omega turbulence model, issues of non-differentiability
are well known. Discrete based adjoints present an essential
alternative. Using Algorithmic Differentiation (AD), the

1

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

sequence of operations of the primal can be reversed more
or less in an automatic fashion that facilitates a robust
and stable adjoint solution. The major strength of such
a method is the flexibility across different flow solvers
and cost functions. Sensitivity computation using adjoint
methods can be carried out in the discrete way either by
using Source transformation tools like TAPENADE [5] or
by using an operator overloading tool like dco/c++ [8],
as in our case. Often the solver restricts the choice of
the AD tool, for example TAPENADE is well equipped
to deal with codes written in Standard C or Fortran
however for codes written in C++ that extensively use
features of object orientation like templates and classes as
in the case of OpenFOAM, operator overloading almost
becomes the automatic choice. Interest in development
of adjoint based methods is obvious from the fact that
almost all leading commercial CFD solvers like ANSYS
Fluent, STAR CCM+ alongwith major open-source solvers
like SU2, OpenFOAM now have their own adjoint solvers.
However, most of them are still in their early stages and
none at this point can claim to tackle the complexities
of real world engineering problems. Here we present
the discrete adjoint version of Foam-extend(v3.1) building
upon our experience with discrete adjoint OpenFOAM[15]
[1]. Foam-extend is a kind of fork of OpenFOAM
that retains many of its structural features with some
additional extensions. Like OpenFOAM, it is a finite
volume based solver written in C++. Some of the
additional features include Mixing plane boundary for
turbomachinery applications, density based roe-flux solver,
dynamic mesh capability and GPU support via cuda solvers.
In this paper however, we intend to focus on adjoints
of puCoupledFoam, an implicit pressure-velocity coupled
incompressible steady state solver based on explicit use
of Rhie-Chow interpolation. We are also focussing on
ducted flows where rather than computing sensitivities with
respect to points on a parametrized surface, sesitivities
are computed in the entire volume space. The section
2 gives a brief desciption of the physics of the problem,
following which the black-box discrete adjoint formulation
is underlined in some detail. The methodology is then
tested on the backwardFacingstepbend test case where we
see the temporal and memory complexities of the black-box
approach. The results are verified using the continuous
adjoint formulation. In section 3, standard performance
improvement techniques such as binomial checkpointing
[4] and symbolic treatment of the linear solver [7] is adapted
to our implementations. These powerful improvements
enable us to apply our implementation to a mid-size
industrial test case, the S shaped airconditioning duct in
section 4. We summarize our results in section 5.

2 The primal solution and the black-box approach

2.1 Governing Equations

The governing equation solved to demonstrate the
functionality of discrete adjoint Foam-extend is

incompressible steady state Navier-Strokes equation
with an additional ressistance term. It needs to be
mentioned here though that the functionality can be
seamlessly extended to all kinds of flow solvers whether
it be for incompressible or compressible flows, laminar or
turbulent flows, steady or unsteady flows. The capability
of discrete adjoint OpenFOAM to compute adjoints from
unsteady flows has been previously demonstrated [1].

(v.O)v =−Op+O.(2νD(v))−αv (momentum) (1)

O.v = 0 (continuity) (2)

Here v denotes the velocity vector, p the pressure, ν the
kinematic viscosity, and D(v) is the rate of strain tensor.
α is the porosity. The value of α lies between 0 and
1. If α is zero for an individual cell, it implies that it is
permeable and the flow passes through the cell without any
hindrance, whereas if α is 1, it means the cell completely
blocks the flow. We use α as our basic design parameter.
Thus the volume sensitivities we compute are basically
the gradient of our objective function with respect to α .
This approach has been discussed in considerable detail
in [11]. Two methods to solve the governing equations
(1) and (2) are considered in this paper. One is the
standard SIMPLE algorithm and the other is the coupled
velocity-pressure approach that directly solves multiple
equations and couplings in one matrix system.

The cost function considered in this paper is the total
power loss between the inlet and outlet,

J =
∫

τ

p+0.5v2 dτ (3)

To obtain the adjoints, we employ two basic methods.
We then apply the discrete adjoint method to compute the
adjoint sensitivities. These results are then verified against
the continuous approach.

1. The discrete adjoint approach by Operator
overloading: The basic steps of the method involves
overloading all the basic datatype of Foam, i.e scalar
with the appropriate dco adjoint data type, for example,
dco::ga1s for first order adjoints. The following step
involved writing adjoint drivers based on basic foam solvers
such as simpleFoam, puCoupledFoam etc. These steps are
described in more detail in section 3.

2. The continuous approach: The official version of
OpenFOAM has the basic implementation of the continuous
adjoint equations derived from the steady state Navier
Strokes equation for internal flows. The application
is adjointShapeOptimizationFoam where alongside the
equations of momentum and continuity, we additionally
solve their adjoint complements:

(v ·O)u=−Oq+O ·(2νD(u))−αu (adjoint momentum)
(4)

2

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

Figure 1: Binomial checkpointing applied to puCoupledFoam

O ·u = 0 (adjoint continuity) (5)

where u denotes the adjoint velocity vector, q denotes
the adjoint pressure. Other symbols remain the same as in
equation (1) and (2).

2.2 Discrete adjoint Foam-extend

The basic steps of overloading the generic foam datatype
and recompiling includes:
1. Put dco in foam/src.
2. Overloading operators, basic mathematical functions and
data types
3. Include dco header files and linking to all the dco files
4. Replace the custom Foam datatype, scalar with the
generic dco adjoint datatype (dco::ga1s<double>)

After performing the mentioned changes, theoretically
Foam just needs to be recomplied. However, overloading
with AD tools on such a large size code rarely, if ever,
works out of the box. We need to adapt to the functionalities
of AD tool such as removing unions in this case, removal
of explicit namespacing and explicit casts do deal with

assignment operations.
We then write the black-box adjoint driver based on

puCoupledFoam. The generic set of guidelines for writing
an adjoint solver based on any solver in Foam remains
relatively similar.

1. Modify the momentum equation, UEqn.H to
pluck in the porosity term as shown in Equation 1.
fvVectorMatrix UEqn
(fvm::div(phi, U) + turbulence->divDevReff(U)
+ fvm::Sp(alpha, U));

2. Create tape and allocate memory for the tape
dco::ga1s<double>::global_tape =
dco::ga1s<double>::tape_t::create();

3. Initialize cost function
scalar J = 0;

4. Register the individual entries of alpha as inputs
for(int i=0; i<N; i++)

Solver Primal RAM Primal Time Adjoint RAM Adjoint Time
Decoupled without LST 139 MB 75s 906 MB 778s
Decoupled with LST 139 MB 75s 283 MB 758s
Coupled without LST 175 MB 11s 13GB 77s
Coupled with LST 175 MB 11s 303MB 62s

Table 1: Memory and Runtime for the backwardFacingstepbend case for coupled and decoupled solvers with and without
Linear solver treatment

3

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

Figure 2: Sensitivities for the ’backwardFacingStepBend’ test case, a) Continuous adjoints b) Decoupled discrete adjoint
with Linear Solver treatment (LST), c) Blackbox coupled discrete adjoint, d) Coupled discrete adjoint with LST

dco::ga1s<double>::global_tape->register_variable(alpha[i]);

5. Obtain the primal solution by solving the coupled system

6. Evaluate the cost function from Equation (5)

This black-box discrete adjoint approach based on
puCoupledFoam is applied to a small scale test case,
backwardFacingStepBend .

The case is steady, laminar with a Reynolds number
of 100. The The sensitivities obtained using the various
approached are shown in Fig.2. The computational domain
comprises of roughly 5000 grid points.

3 Performance improvement

3.1 Checkpointing

As often is the case, a black box approach is inadequate
even for small size test cases. The amount of memory
required for a black box approach is usually not available
even on clusters. Performance improvement strategies
are especially needed for computing adjoints of coupled
solvers since the size of the system matrix is usually
bigger compared to a decoupled solver. Also the
number of iterations required for convergence of the
block-aware linear solver such as the algebraic multigrid
(AMG) or BiCGStab (Bi-conjugate gradient stabilized) in
Foam-extend is typically large. The alternate option would
be to recompute everything where only a single time-step
(pseudo, as in this case) resides in the memory at any given
instant of time. This approach pertaining to the tedious
number of recomputations is often not efficient in terms of
runtime. A useful tradeoff between these two approaches
or rather between memory and runtime is achieved via
checkpointing. The former approach can be perceived
as one where the distance between two checkpoints is
the entire pseudo-time iteration process, whereas in the
case of the later, each pseudo-time step is checkpointed.
The useful tradeoff lies between these two. A naive
equidistant checkpointing scheme, where based on factors

like the number of iterations and amount of memory
available, checkpoints are placed at a fixed distance from
one another. This method though useful, can be improved
upon by employing Binomial Checkpointing using Revolve
[4], where checkpoints are placed based on mathematical
co-relations of the constituent factors like time steps and
number of affordable checkpoints. Also, the Binomial
checkpointing scheme re-uses checkpoints once they are
freed which contributes to the efficiency in computation of
adjoints during the reverse mode. Fig. 1 is a schematic
diagram showing the process of Binomial checkpointing
scheme applied to puCoupledFoam.

3.2 Analytic treatment of block matrix linear solver

Though the checkpointing scheme brings us to a decent
compromise between memory and runtime, still the amount
of memory required is rather high, especially if this
framework is to be adaptable for medium to large scale
industrial process. It has been noted that almost 90
% of the amount of memory required is consumed
in recording the linear solver iterations, and this very
expensive especially in the case of coupled solvers. For
the backwardFacingstepbend test case, Fig. 3 denotes
the number of linear solver iterations required in each
pseudo-time iteration step for the problem to converge. This
is particularly expensive for taping while using coupled
linear solvers like the Algebraic Multigrid (AMG) since the
number of linear solver iterations is usually large. There
are basically two strategies that we can employ here. One is
checkpointing of the linear solver and the second is analytic
treatment of the linear solver [3]. The former usually
overcompensates in runtime and hence may not be a good
choice. In case of the later, we do not tape through the
linear solver anymore. The tape is switched off during the
forward run after the variables are registered and then we
symbolically solve a different set of linear equations during
the reverse mode usually by using the same linear solver.

The linear equation system solved during the forward
run is:

4

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

Solver Primal RAM Primal Time Tape Mem. Adjoint Time
Decoupled 820 MB 80min(3.6T1) 10.3Gb 4.9h(4T2)
Coupled 1.3 GB 22min(T1) 10.1GB 1.2h(T2)

Table 2: Memory and Runtime for the S-bend test case

Figure 3: No. of linear solver iterations for the AMG solver

Figure 4: Convergence of the BiCG (bi-conjugate gradient)
linear solver that poses problems for blackbox adjoint

A · x = b (6)

In this approach we do not tape the iterations of this linear
solve during the forward run. We register the Block Matrix
A and right hand side, b as inputs and x as output and
perform the linear solve passively. During the reverse run,
we receive incoming adjoints, x(1) from the tape. We then
solve the following system of linear equations to fill the
missing gap during the reverse run:

AT ·b(1) = x(1) (7)

A(1) =−bT
(1) · x (8)

As shown in Equation 7, the transpose of matrix A is
required to solve the adjoint linear system. This might not
be trivial in some cases but since the BlocklduMatrix format
uses ldu addressing scheme in Foam, this can be performed
with relative ease. Note that in Fig. 5 each block in Matrix
A has 16 coefficients. During the registering of inputs

during the forward run, each of the 16 coefficients have
to be individually registered and correspondingly during
the reverse run, adjoints of each coefficient is obtained by
multiplying every coefficient in bT

(1) of order n*1 with each
coefficent of x which is of order 1*n resulting in A(1) of
order n*n.

Also, analytical treatment of the linear solver can be
indispensable for obtaining correct adjoints when dealing
with certain kinds of linear solver. It is now well known
that a black-box approach for obtaining adjoints using
Conjugate Gradient (CG) linear solver algorithm and it’s
variants may result in the divergence of the respective
adjoints. The convergence of the primal for the test case
under consideration is shown in Fig 4. The residuals seem
to enter into a kind of limit cycle oscillations. Doing a
black-box approach over this results in incorrect adjoints.
The mathematical foundation for this is still the subject of
ongoing investigation.

Table 1 shows the relative runtime and memory
requirements with and without the linear solver treatment.

4 Case study: Verification and Validation

Three dimensional (3D) S-bend airduct for cabin
ventilation: The flow regime here is laminar with a
Reynolds number (Re) of 150. The computational domain
is an unstructured grid of roughly 0.23 million cells. The
boundary condition at the inlet and outlet is Drichlet,
whereas the walls are no-slip no-penetration. The objective
function in this case is the power loss between the
inlet and the outlet as in Equation 3. Sensitivities, i.e.
derivative of the objective function with respect to the
porosities al pha, are computed using the discrete adjoint
of implicit solver puCoupledFoam. These derivatives
serve as the building blocks of the design optimization
process. The desired sensitivity map is shown in Fig.6 .
For comparison purpose, the sensitivities obtained by the
continuous adjoint implementation in OpenFOAM, namely
adjointShapeOptimizationFoam and discrete adjoint based
on simpleFoam is also shown. Table 2 shows the relative
performance of the two methods in terms of memory and
runtime.

The negative sensitivities depict the region where
optimization could place material. There seems to
be a qualitative agreement between different approaches
in terms of where optimization should place material.
However exact quantitative consistency is not possible since
the algorithms for obtaining the adjoints are different.

5

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

Figure 5: Schematic of the symbolic treatment of Block-Matrix linear solver

5 Conclusion

The speed-up in the computation of sensitivities using
adjoint of coupled implicit solvers come from two sources.
First is due to the faster convergence of the primal in
terms of runtime, compared to a SIMPLE based decoupled
solver. The later and the more significant contribution
comes from the fact that the primal potentially converges
in far fewer iterations of the non-linear solver. This is
especially advantageous since we employ checkpointing on
the pseudo-time steps and by reducing these pseudo-time
steps, the recomputation cost is significantly reduced, thus
assisting in the accelaration of the optimization process.

6 Acknowledgement

This work was funded by the EU through the
FP7-PEOPLE-2012-ITN "AboutFlow" Grant agreement
number:317006

References

[1] A.Sen, M.Towara, and U.Naumann. A discrete adjoint
version of an unsteady incompressible solver for
openfoam using algorithmic differentiation. WCCM
XI – ECCM V – ECFD VI, Barcelona, 2014, 2014.

[2] Dirk Büche. Automated design optimization
of compressor blades for stationary, large-scale
turbomachinery. In in Proceedings of the ASME/IGTI
Turbo Expo 2003. ASME, 2003.

[3] M. B. Giles. Collected matrix derivative results for
forward and reverse mode algorithmic differentiation.
In Advances in Automatic Differentiation, pages
35–44. Springer, 2008.

[4] A. Griewank and A. Walther. Algorithm 799:
Revolve: An implementation of checkpointing
for the reverse or adjoint mode of computational
differentiation. ACM Transactions on Mathematical
Software, 26(1):19–45, March 2000.

[5] L. Hascoët and V. Pascual. The Tapenade Automatic
Differentiation tool: Principles, Model, and
Specification. ACM Transactions On Mathematical
Software, 39(3), 2013.

[6] Antony Jameson. Aerodynamic shape optimization
using the adjoint method. In VKI Lecture Series
on Aerodynamic Drag Prediction and Reduction,

6

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

von Karman Institute of Fluid Dynamics, Rhode St
Genese, pages 3–7, 2003.

[7] K. Jareteg, V. Vukčević, and H. Jasak.
pucoupledfoam- an open source coupled
incompressible pressure-velocity solver based on
foam-extend, 2014.

[8] J. Lotz, K. Leppkes, and U. Naumann. dco/c++ -
derivative code by overloading in C++. Aachener
Informatik Berichte (AIB-2011-06), 2011.

[9] U. Naumann. The Art of Differentiating Computer
Programs. An Introduction to Algorithmic
Differentiation., chapter 1&2. SIAM, 2012.

[10] OpenFOAM Ltd. OpenFOAM - The Open Source
Computational Fluid Dynamics (CFD) Toolbox.
http://openfoam.com/.

[11] C. Othmer. A continuous adjoint formulation for the
computation of topological and surface sensitivities
of ducted flows. International Journal for Numerical
Methods in Fluids, 58(8):861–877, 2008.

[12] C. Othmer. Adjoint methods for car aerodynamics.
Journal of Mathematics in Industry, 4:4–6, 2014.

[13] S. V. Patankar and D.B. Spalding. A calculation
procedure for heat, mass and momentum transfer in
three-dimensional parabolic flows. Int. J. of Heat and
Mass Transfer, 15(10):1787–1806, 1972.

[14] The OpenFOAM R© Extend Project.
Foam-extend-3.1. http://sourceforge.net/
p/openfoam-extend/foam-extend-3.1/ci/
master/tree/ReleaseNotes.txt.

[15] M. Towara and U. Naumann. A discrete adjoint
model for OpenFOAM. Procedia Computer Science,
18(0):429 – 438, 2013. 2013 International Conference
on Computational Science.

7

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

Figure 6: Sensitivities of the S-bend shaped duct, Adjoints obtained by a, b) continuous method, c, d) Discrete adjoint of
coupled solver, e, f) Discrete adjoint of decoupled solver

8

