
EUROGEN 2015 September 14-16, 2015, Glasgow, UK

Implementation and measurements of an efficient Fixed Point Adjoint
A.Taftaf*, L. Hascoët and V.Pascual

INRIA
2004 Route des Lucioles, Sophia-Antipolis, France

Email: {Elaa.Teftef, Laurent.Hascoet, Valerie.Pascual}@inria.fr

Summary
Efficient Algorithmic Differentiation of Fixed-Point loops requires a specific strategy to avoid explosion of memory
requirements. Among the strategies documented in literature, we have selected the one introduced by B. Christianson.
This method features original mechanisms such as repeated access to the trajectory stack or duplicated differentiation of
the loop body with respect to different independent variables. We describe in this paper how the method must be further
specified to take into account the particularities of real codes, and how data flow information can be used to automate
detection of relevant variable sets. We describe the way we implement this method inside an AD tool. Experiments on a
medium-size application demonstrate a minor, but non negligible improvement of the accuracy of the result, and more
importantly a major reduction of the memory needed to store the trajectories.

Keywords: Algorithmic Differentiation, Adjoint, Fixed-Point loop

1 Introduction

The adjoint mode of Algorithmic Differentiation (AD)1 is
widely used in science and engineering. Assuming that the
simulation has a scalar output, the adjoint algorithm can
return its gradient at a cost independent of the number of
inputs. The key is that adjoints propagate partial gradients
backward from the result of the simulation.

The main difficulty of Adjoint AD lies in the
management of intermediate values. The computation of
the partial gradients involves the partial derivatives of each
run-time elementary computation of the original simulation.
As these partial derivatives are needed in reverse execution
order, and they use values from the original (forward
order) computation, strategies must be designed to store or
recompute these values. This has a cost that may be quite
high, in extra computation time, storage memory space, or
both. Adjoint AD tools provide a number of such strategies,
based on some combination of:

1. storage of intermediate values as the original
simulation runs

2. re-computation of selected phases of the original
simulation to retrieve these values

3. inversion of some simple operations of the original
algorithm

The specific AD tool that we develop basically relies on the
first strategy (1). Therefore the structure of an adjoint code
consists of a forward (FWD) sweep that runs the original
code and stores the needed values, followed by a backward
(BWD) sweep that retrieves the stored values and computes

the derivatives. The above strategies are general, and as
such are unable to take advantage of algorithmic knowledge
of the specific simulation. On the other hand, exploiting
knowledge of the algorithm and the structure of the given
simulation code can yield a huge performance improvement
in the Adjoint AD code. For instance, special strategies
are available for parallel loops, long unsteady iterative
loops, linear solvers... We focus on the particular case of
Fixed-Point (FP) loops, i.e. loops that iteratively refine a
value until it becomes stationary. We call state the variable
that progressively evolves as the FP loop runs till it reaches
a stationary value and parameters the variables used by the
FP iteration that influence the result but are never modified
during the FP loop.

As FP algorithms start from some initial guess for the
state, one intuition is that at least the first iterations are
almost meaningless. Therefore, storing them for the adjoint
computation is a serious waste of memory. Furthermore, FP
loops that start with an initial guess almost equal to the final
result converge only in a few iterations. As the standard
adjoint loop runs for exactly the same number of iterations,
it may return a gradient that is not converged enough. For
these reasons we looked for a specific adjoint strategy for
FP loops. Among the strategies documented in literature,
we have selected2 the one introduced by B. Christianson,3, 4

in which the adjoint FP loop is a standalone new FP loop,
that uses intermediate values from the last iteration only.

A FP equation
z∗ = ϕ(z∗,x)

where x is some fixed (set of) parameters, defines the state
z∗ as a function z∗(x) of x. Figure 1 shows a code that solves

1

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

zk+1=φ(zk (x) , x)

y=f (z∗ , x)

z∗

Figure 1: Example of code containing a FP loop

a FP equation by first setting z to some initial z0, then solves
iteratively the FP equation, until reaching some stationarity
of z by comparing zk with zk+1, and finally computes some
final result y = f (z∗,x). B.Christianson’s strategy3 stores
only the converged value z∗ and the converged intermediate
values occurring in the last FP iteration of z∗ = ϕ(z∗,x).
All intermediate values of previous iterations are not stored.
Furthermore, the adjoint of the FP loop is a FP loop itself.
It has its own state variable and its own stopping criterion
on stationarity of this new state. This adjoint algorithm is
shown in figure 2. It keeps the standard structure of adjoint
codes for everything before and after the FP loop. It also
keeps the structure of the FWD sweep of the FP loop, except
that only the last iteration’s intermediate values are stored.
On the BWD sweep the method introduces a new variable
w of the same shape as z which is the new state variable.
The adjoint FP equation:

w∗ = w∗.
∂
∂ z

ϕ(z∗,x)+ z

defines w∗ as a function of z (returned by the adjoint of the
downstream computation f) through the adjoint derivative
of ϕ with respect to z. The adjoint terminates by computing
the required x, using w∗ and the adjoint derivatives of ϕ with
respect to x. Therefore, the method involves two different
derivatives of ϕ . The above adjoint derivative computations
repeatedly use the intermediate values stored by the last
forward iteration, which are z∗ plus whatever was used to
compute it during the last iteration.

As the specific adjoint method requires a repeated
access to the stack, an extension of the standard stack
mechanism has been defined in a previous work.2

This paper focuses on the practical implementation of
this special adjoint strategy. We describe how this strategy
needs to be further specified in order to take into account
the complexity of real codes. We describe how the different
variables (state and parameters) needed by the adjoint can
be automatically detected thanks to the data flow analysis
of an AD tool. We describe the way we implement this
strategy in our tool Tapenade.5 Finally, we validate our
implementation on a medium-size code.

y=1
z= y . ∂

∂ z f (z∗ , x)
x= y . ∂

∂ x f (z∗ , x)
w0=z

zk+1=φ(zk , x)
If (last iteration) push(z∗)

y=f (z∗ , x)

pop (z∗)

wk+1=wk .
∂
∂ z φ(z∗ , x)+w0

x=w∗ . ∂
∂ x φ(z∗ , x)+x

z∗

w∗

Forward Sweep

Backward Sweep

Figure 2: FP adjoint method introduced by B.Christianson

2 Acceptable shapes of Fixed-Point loops

Theoretical works about the FP loops often present these
loops schematically as a while loop around a single call to
a function ϕ that implements the FP iteration. FP loops in
real codes almost never follow this structure. Even when
obeying a classical while loop structure, the candidate FP
loop may exhibit multiple loop exits, and its body may
contain more than only ϕ e.g. I/O. In many cases, these
structures prevent application of the theoretical adjoint FP
method. Therefore, we need to define a set of sufficient
conditions on the candidate FP loop to apply the method.

Obviously, the first condition is that the state variables
reach a fixed-point i.e. their values are stationary during the
last iteration. Moreover, since the essence of this adjoint
FP method is to adjoin only the last iteration, this last
iteration must contain the complete computation of ϕ . This
forbids loops with alternate exits, since the last iteration
does not sweep through the complete body. Classically,
one could transform the loop body to remove alternate exits,
by introducing boolean variables and tests that would affect
only the last iteration. We must forbid these transformed
loops as well. To this end, we add the condition that
control flow on the loop body must become stationary at
the convergence of the FP loop. This is a strong assumption
that cannot be checked statically, but could be checked
dynamically.

Conversely, the candidate FP loop could contain more
than just ϕ . We must forbid that it computes other
differentiable variables that do not become stationary. To
enforce this, we require that every variable overwritten by

2

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

the FP loop body is a part of the state, and therefore (from
the first condition) is stationary. One tolerable exception
is about the computation of the FP residual, which is not
strictly speaking a part of ϕ . Similarly, we may tolerate
loop bodies that contain I/O or other non-differentiable
operations.

It may happen that the (unique) loop exit is not located
at the loop header itself but somewhere else in the body.
These loops can be transformed by unrolling, so that the
exit is placed at the loop head, and the conditions above
are satisfied. This unrolling is outside the scope of this
work and we will simply require that the loop exit is at loop
header.

We believe that these are sufficient applicability
conditions of the method.3 Refinements are possible, for
instance, when two exits may be merged into one when
no differentiable computation occurs between them. Such
extensions of the method are beyond the scope of our
present implementation.

3 Automatic detection of parameters and state

It is very hard to detect every FP loop in a given code. This
is related to the undecidability of general static data-flow
analysis. Therefore, we rely on the end-user to provide
this information, for instance through a directive. As we
required (section 2) that the candidate FP loop has the
syntactic structure of a loop, one directive is enough to
designate it. Thanks to the adjoint dead code analysis, the
AD tool can distinguish between the code that contains the
computation of the state and the code that contains other
non-differentiable operations, such as residual computation.

The program variables that form the state and the
parameters can also be detected automatically from static
data-flow analysis. Given the use set of the variables read
by the FP loop, the out set of the variables written by the
FP loop and the live set of the variables that are used in the
sequel of FP loop, we can define:

state = out(FP loop)∩ live
parameters = use(FP loop)\out(FP loop)

(1)

As we are only looking for differentiable dependencies of
the parameters on the state, we may further restrict the
above sets to the variables of differentiable type i.e. REAL
or COMPLEX.

In some cases, it may be useful to let the user provide a
larger set of state variables, probably adding extra variables
that also reach a stationary value but are not needed in the
sequel code. This is more a matter of style as the final
gradient will not change. When on the other hand the
data-flow analysis does not agree with the end-user choice,
a warning message can be issued.

From a more technical standpoint, our specification of
the state and parameters imposes a restriction on the use
of arrays. In fact, our tool doesn’t distinguish individual
array elements during data-flow analysis. Arrays are
considered as atoms. If an array is partly used to hold

y=1
z= y . ∂

∂ z f (z∗ , x)
x= y . ∂

∂ x f (z∗ , x)
z0=z
zorig=z

zk+1=φ(zk , x)
If (last iteration) push(z∗)

y=f (z∗ , x)

pop (z∗)

zk+1=zk .
∂
∂ z φ(z∗ , x)+ zorig

x=z∗ . ∂
∂ x φ(z∗ , x)+x

z∗

z∗

Forward Sweep

Backward Sweep

Figure 3: FP adjoint method after renaming the
intermediate variables

the state and partly to hold the parameters, our analysis
cannot differentiate between the two parts. We therefore
recommend that state variables and parameters are clearly
identifiable so that the data-flow analysis can recognise
them.

4 Specification of Implementation

4.1 Renaming the intermediate variables

The special FP adjoint, sketched in figure 2, makes use of an
intermediate adjoint set of variables w which are temporary
utility variables that do not correspond exactly to the adjoint
of original variables. However, this w has the same size
and shape as the state z. For implementation reasons,
actual differentiation of the loop body is performed by a
recursive call to the standard differentiation mechanism,
which systematically names the adjoint variables after their
original variables, so that w will actually be named z. The
adjoint loop body must therefore have the form: zk+1 =
zk.ϕ(z∗,x). To accommodate this form, we transformed the
FP adjoint, introducing in zorig a copy of the z, yielding the
equivalent formulation shown in figure 3.

4.2 Specifying the transformation on Control Flow
Graphs

As far as a theoretical description is concerned, it is
perfectly acceptable to represent a FP loop with a simple
body consisting of a call to ϕ . However, for real codes this
is a too strong assumption. We must specify the adjoint
transformation so that it applies to any FP loop body that
respects the conditions of section 2. Our approach is to

3

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

superimpose a tree of nested Flow Graph Levels (FGLs)
on the Control Flow Graph of any subroutine. A FGL is
either a single Basic Block or a graph of deeper FGLs.
This way, the adjoint of a FGL is defined as a new FGL
that connects the adjoints of the child FGLs and a few
Basic Blocks required by the transformation. Adjoining a
Flow Graph is thus a recursive transformation on the FGLs.
Every enclosing FGL needs to know about its children
FGLs, their entry point, which is a single flow arrow, and
their exit points, which may be many, i.e. many arrows.
We introduce a level in the tree of nested FGLs, containing
a particular piece of code, to express that this piece has
a specific, probably more efficient adjoint. For instance,
we introduce such a level for parallel loops, time-stepping
loops, plain loops, and now for FP loops.

Specifically for a FP loop, the original FGL (see figure4
(left)) is composed of a loop header Basic Block and a
single child FGL for the loop body. We arbitrarily place two
cycling arrows after the loop body to represent the general
case where one FGL may have several exits. The FWD
sweep of the FP loop adjoint (see figure 4 (right)) basically
copies the original loop structure, but inserts after this loop
the FWD sweep of the adjoint of the loop body, thus storing
intermediate values only for the last iteration. The BWD
sweep (see figure 5) introduces several new Basic Blocks to
hold:

• the calls that enable a repeated access to the stack.

• the computation of the variation of z into a variable
delta which is used in the exit condition of the while
loop.

• the initial storage of z into zorig and its use at the end
of each iteration.

The FWD and BWD sweeps of the FP loop body, resulting
recursively from the adjoint differentiation of the loop body
FGL are represented in figure 4 by oval boxes. They
are connected to the new Basic Blocks as shown. The
characteristic of the adjoint of a FP loop, visible in figure
3, is that the FP body must be differentiated twice, once
with respect to z and once with respect to x. This accounts
for the two FGL (oval boxes) in figure 5, that stand for the
two different adjoint BWD sweeps of the loop body.

5 Experimental Results

After specification, we implemented the special adjoint
method in our AD tool Tapenade. For validation, we
selected a real medium-size code which contains a FP loop.
This code named GPDE is a Fortran90 program developed
at Queen Mary University Of London (QMUL). It is a
an unstructured pressure-based steady-state Navier-Stokes
solver with finite volume spatial discretization. It is
based on the SIMPLE (Semi-Implicit Method for Pressure
Linked Equations)6 algorithm for incompressible viscous
flow computation. The FP loop of the program computes
the pression and velocity of an incompressible flow by using

FP Loop Body FP Loop Body

FP Loop Header

FWD FP Loop
Body

push (0) push (1)

FP Loop Header

Figure 4: left : flow graph level of a fixed-point loop, right
: flow graph level of the FWD sweep of a fixed-point loop

the SIMPLE algorithm. In every iteration, the algorithm
computes the velocity by solving the momentum equation.
Then it uses the obtained value to compute the pression via
solving the continuity equation.

For comparaison purposes, we differentiated GPDE
with standard adjoint differentiation as well as with our
special FP implementation. We thus compare the standard
FP adjoint with our special FP adjoint. The lesser benefit
concerns run-time and its link to accuracy. By construction,
the standard FP adjoint runs for 66 iterations, which is
the iteration count of the original FP loop. On the other
hand, the special FP adjoint runs exactly as many times as
needed to converge z. Figure 6 shows the relative error of
the adjoint compared with a reference value (obtained by
forcing the FP loop to run 151 times) as a function of the
number of adjoint iterations for the special FP adjoint. For
the standard FP adjoint, we have only one point on figure 6
for 66 iterations. The special FP adjoint performs slightly
better. For instance, it takes only 60 iterations to reach the
same accuracy (2.5∗10−4) as the standard FP adjoint. This
small improvement can be explained by the fact that the
adjoint is computed using only the fully converged values.

The principal benefit of the special method is
about reduction of the memory consumption, since the
intermediate values are stored only during the last forward
iteration. The peak stack space used by the special adjoint is
almost 60 times smaller than the space used by the standard
adjoint (10.1 Mbytes vs. 605.5 Mbytes).

6 Further work

We have described an implementation of a specialized
adjoint strategy for FP loops in an AD tool. Our first
experiments produce efficient adjoint code, especially in
terms of low memory consumption. There are a number
of questions that might be studied further to achieve better

4

EUROGEN 2015 September 14-16, 2015, Glasgow, UK

BWD FP Loop Body
with respect to z

DO WHILE(delta>ϵ)

0

delta=1.0
z_orig = z
CALL start_repeat_stack()

z_old = z
if (pop())

CALL end_repeat_stack()
if (pop())

BWD FP Loop Body
with respect to x

10 1

2
z = z + z_orig
delta = (z - z_old)
CALL reset_repeat_stack()

Figure 5: flow graph level of the BWD sweep of a
fixed-point loop

Figure 6: Error mesurements of both standard and special
fixed-point adjoint methods

results and wider applicability.
The stopping criterion of the BWD adjoint loop is

reasonable, but so far arbitrary. The original article3gives
indications of a better criterion. However, it is not clear
to us whether we can implement it as is. In any case, the
implementation might leave more freedom in the choice of
this criterion.

Similarly, we have stated a number of restrictions on
the structure of candidate FP loops. These are sufficient
conditions, but we believe they can be partly lifted, for
instance, when two loop exits can be considered as only
one because the code between them is not differentiated.
The request that the flow of control becomes stationary at
the end of the FP loop is essential, and we have no means
of checking it statically in general on the source. However,
it might be interesting to check it dynamically at run time.

In many applications, the FP loop is enclosed in another
loop and the code takes advantage of this to use the result
of the previous FP loop as a clever initial guess for the
next FP loop. We believe that the adjoint FP loop can use
a similar mechanism, even if the variable w is not clearly
related to some variable of the original code. However, we
made such experiments by reusing the previous w. We were
disappointed to find out that the benefit is very limited, only
decreasing the number of inner adjoint iterations by one or
two percents.

Finally, this adjoint FP loop strategy is for us a first
illustration of the interest of differentiating a given piece
of code (i.e. ϕ) twice, with respect to different sets of
independent variables. This is a change from our tool’s
original choice, which is to maintain only one differentiated
version of each piece of code and therefore to generalize
activity contexts to the union of all possible run time activity
contexts. Following in this direction, a recent development
in our tool jointly with students from QMUL, allows the
user to request many specialized differentiated versions of
any given subroutine. An article describing the results is in
preparation.

Acknowledgement

This research is supported by the project “About
Flow”, funded by the European Commission
under FP7-PEOPLE-2012-ITN-317006. See
“http://aboutflow.sems.qmul.ac.uk”.

References

[1] Griewank, A. and Walther, A. Evaluating
Derivatives: Principles and Techniques of Algorithmic
Differentiation. Other Titles in Applied Mathematics,
#105. SIAM, (2008).

[2] Taftaf, A., Pascual, V., and Hascoët, L. Adjoint
of Fixed-Point iterations. 11th World Congress on
Computational Mechanics (WCCM XI) 5, 5024–5034
(2014).

[3] Christianson, B. Reverse accumulation and attractive
fixed points. Optimization Methods and Software 3,
311–326 (1994).

[4] Christianson, B. Reverse accumulation and implicit
functions. Optimization Methods and Software 9(4),
307–322 (1998).

[5] Hascoët, L. and Pascual, V. The Tapenade
Automatic Differentiation tool: Principles, Model, and
Specification. ACM Transactions On Mathematical
Software 39(3) (2013).

[6] Reuther, J., Alonso, J., Rimlinger, M., and Jameson, A.
Aerodynamic shape optimization of supersonic aircraft
configurations via an adjoint formulation on distributed
memory parallel computers. Computers and Fluids
28(675700) (1999).

5

